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Anxious/depressed symptoms are related to microstructural
maturation of white matter in typically developing youths

MATTHEW D. ALBAUGH," SIMON DUCHARME,” SHERIF KARAMA,” RICHARD WATTS,*
JOHN D. LEWIS,” CATHERINE ORR,” TUONG-VI NGUYEN,” ROBERT C. MCKINSTRY*
KELLY N. BOTTERON, ALAN C. EVANS,” JAMES J. HUDZIAK,“ AND

THE BRAIN DEVELOPMENT COOPERATIVE GROUP

aUniversity of Vermont College of Medicine; "McGill University; and Washington University in St. Louis School of Medicine

Abstract

There are multiple recent reports of an association between anxious/depressed (A/D) symptomatology and the rate of cerebral cortical thickness maturation
in typically developing youths. We investigated the degree to which anxious/depressed symptoms are tied to age-related microstructural changes in
cerebral fiber pathways. The participants were part of the NIH MRI Study of Normal Brain Development. Child Behavior Checklist A/D scores and diffusion
imaging were available for 175 youths (84 males, 91 females; 241 magnetic resonance imagings) at up to three visits. The participants ranged from 5.7 to
18.4 years of age at the time of the scan. Alignment of fractional anisotropy data was implemented using FSL/Tract-Based Spatial Statistics, and linear
mixed model regression was carried out using SPSS. Child Behavior Checklist A/D was associated with the rate of microstructural development in several
white matter pathways, including the bilateral anterior thalamic radiation, bilateral inferior longitudinal fasciculus, left superior longitudinal fasciculus,
and right cingulum. Across these pathways, greater age-related fractional anisotropy increases were observed at lower levels of A/D. The results suggest that
subclinical A/D symptoms are associated with the rate of microstructural development within several white matter pathways that have been implicated in

affect regulation, as well as mood and anxiety psychopathology.

Although numerous neuroimaging studies have investigated
functional and structural correlates of mood and anxiety
symptoms, few have investigated the extent to which such
symptoms are related to brain morphometric changes across
time in the developing human brain (Ducharme et al.,
2014; Newman et al., 2015). Furthermore, no previous stud-
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ies have examined the degree to which mood and anxiety
symptoms are associated with age-related changes in white
matter pathways. Utilizing a large sample of typically devel-
oping youths, the aim of the present study is to test the degree
to which subclinical mood and anxiety symptoms are associ-
ated with age-related changes in white matter microstructure.

The advent of diffusion tensor imaging (DTI) has allowed
for the assessment of age-related changes in white matter mi-
crostructure among developing youths and young adults
(Basser & Pierpaoli, 1996; Makris et al., 1997; Mukherjee
et al., 2001; Pierpaoli, Jezzard, Basser, Barnett, & Di Chiro,
1996). With regard to white matter microstructure, evidence
indicates that fractional anisotropy (FA) largely reflects the
packing density of axons, axonal diameter, as well as degree
of myelination within white matter pathways (Beaulieu,
2002). In general, studies investigating white matter develop-
ment across childhood and adolescence have reported wide-
spread FA increases in white matter pathways (Cascio, Gerig,
& Piven, 2007; Lebel et al., 2012; Lebel, Walker, Leemans,
Phillips, & Beaulieu, 2008; Schmithorst, Wilke, Dardzinski,
& Holland, 2002; Snook, Paulson, Roy, Phillips, & Beaulieu,
2005). Such age-related FA increases in cerebral white matter
are postulated to reflect increasing microstructural integrity,
and presumed functional maturation, of cerebral fiber path-
ways. Age-related FA increases within specific white matter
pathways have been found to be uniquely associated with as-
pects of cognitive performance among typically developing
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6- to 17-year-olds (Mabbott, Noseworthy, Bouffet, Laughlin,
& Rockel, 2006).

In recent years, numerous structural neuroimaging studies
have mapped age-related changes in brain structure, including
in gray matter structures such as the cerebral cortex, to par-
ticular behavioral phenotypes (Giedd et al., 2008; Shaw
et al., 2007, 2011). Specifically, aspects of cerebral cortical
thickness development have been tied to intelligence, atten-
tion-deficit/hyperactivity disorder, as well as subclinical at-
tention problems in healthy, typically developing youths
(Ducharme et al., 2012; Shaw et al., 2006, 2007, 2011).
Such findings raise the possibility that trajectories of ana-
tomic brain development, or brain morphometric change
across time, are meaningful endophenotypes when studying
brain—behavior relations among children and adolescents
(Giedd et al., 2008).

Members of our group have recently reported that subclin-
ical anxious/depressed (A/D) problems among typically de-
veloping youths are associated with reduced rates of age-re-
lated cortical thinning within the ventromedial prefrontal
cortex (vmPFC; Ducharme et al., 2014). This finding is in-
triguing given that the vmPFC has been implicated in top-
down modulation of the amygdalae in both animal and human
functional imaging studies (Phelps, Delgado, Nearing, & Le-
Doux, 2004; Quirk & Beer, 2006; Quirk, Garcia, & Gonza-
lez-Lima, 2006; Quirk, Likhtik, Pelletier, & Pare, 2003). It
is possible that delayed cortical thickness development in
the vmPFC may reflect altered maturation of neural systems
involved in the regulation of negative affect. Very recently,
Newman et al. (2015) reported that higher anxiety in children
was characterized by delayed expansion of the vmPFC and an
altered trajectory of global age-related cortical thinning. Sim-
ilar to Ducharme et al. (2014), the authors of this study uti-
lized dimensional measures of anxiety in a large sample of
typically developing youths (Newman et al., 2015). Taken to-
gether, findings from these studies suggest that anxious/de-
pressed symptomology is tied to indices of cortical matura-
tion in typically developing youths.

Prior research indicates that age-related changes in both
cortical thickness and FA are, to some degree, underpinned
by a common biological mechanism (Kochunov et al.,
2011). Given close links between cerebral cortical maturation
and microstructural development of white matter (Kochunov
et al., 2011), it is possible that anxious/depressed symptoms
may be tied to age-related changes in white matter, particu-
larly in white matter pathways such as the uncinate fasciculus,
cingulum bundle, inferior and superior longitudinal fascicu-
lus, and anterior thalamic radiation, which have been linked
to anxious temperament in healthy adults (Kim & Whalen,
2009; Westlye, Bjornebekk, Grydeland, Fjell, & Walhovd,
2011). Utilizing a large cohort of typically developing
youths, we hypothesized that subclinical anxious/depressed
symptoms would be associated with age-related FA changes
in white matter pathways previously implicated in the patho-
physiology of mood and anxiety symptoms. Based on litera-
ture outlined above, we further hypothesized that anxious/de-
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pressed symptoms would be associated with a reduced rate of
microstructural development.

Methods

Sampling and recruitment

The NIH MRI Study of Normal Brain Development is a large,
multisite project that provides a normative database to study
relations between healthy brain maturation and behavior
(Evans, 2006). Subjects were recruited throughout the United
States utilizing a population-based sampling method aimed at
minimizing selection bias (Waber et al., 2007). Using avail-
able US Census 2000 data, a representative, typically devel-
oping sample was recruited at six pediatric study centers.
The six pediatric centers consisted of Children’s Hospital
(Boston), Children’s Hospital Medical Center (Cincinnati, Il-
linois), University of Texas Houston Medical School (Hous-
ton, Texas), University of California Los Angeles Neuropsy-
chiatric Institute and Hospital (Los Angeles), Children’s
Hospital of Philadelphia (Philadelphia, Pennsylvania) and
Washington University (St. Louis, Missouri). Recruitment
was monitored throughout the study, ensuring that enrollment
across all pediatric centers was demographically representa-
tive with regard to age, gender, ethnicity, and socioeconomic
status (full demographic features of subjects are provided in
Evans, 2006). Specifically, census data were used to define
low-, medium-, and high-income categories for families in
the overall population, as well as to determine the expected
distribution of race/ethnicity within each of the income cate-
gories. Race/ethnicity by income categories were distributed
across the study’s planned age distribution. Regionally spe-
cific targets were subsequently created for each pediatric
study center based on postal code census data. Subjects
were not recruited through convenience volunteer methods,
but were obtained and then screened through targeted mail-
ings. An institutional review board approved the study and in-
formed consent was obtained from parents, as well as child
assent. The Objective 1 database (release 4.0) used in this
study included 431 healthy youths, and upon enrollment
(i.e., first study visit), ages ranged from 4.5 years to 18.25
years. The study followed a longitudinal design such that par-
ticipants underwent magnetic resonance imaging brain scan-
ning and behavioral testing on three separate visits, occurring
at roughly 2-year intervals.

Given that the aim of the NIH MRI Study of Normal Brain
Development was to study healthy, typically developing chil-
dren, stringent exclusion criteria were utilized including
meeting criteria for a current or past Axis I disorder on struc-
tured parent or child interview (Diagnostic Interview for Chil-
dren and Adolescents; exceptions included simple phobia,
social phobia, adjustment disorder, oppositional defiant dis-
order, enuresis, encopresis, or nicotine dependency); having
one or more first-degree relatives with a lifetime history of
Axis I psychiatric disorder; family history of inherited neuro-
logical disorder or mental retardation due to nontraumatic
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events; abnormality on neurological examination; gestational
age at birth less than 37 weeks or greater than 42 weeks; and
intrauterine exposure to substances known or highly sus-
pected to alter brain structure or function (for further informa-
tion, see Evans, 2006). Structural MRI and behavioral data
were stored and analyzed within a database at the Data Coor-
dinating Center of the Montreal Neurological Institute,
McGill University.

Child Behavior Checklist (CBCL)

The CBCL, one of the most extensively used instruments for
assessing child psychopathology and competence worldwide,
asks parents to report on specific behaviors exhibited by their
child within the previous 6 months (Achenbach, 1991;
Achenbach & Rescorla, 2001). In the present study, CBCL
A/D scores were utilized as a dimension measure of internal-
izing symptoms in this cohort of healthy children. Items on
the CBCL A/D syndrome scale include “Too fearful or anx-
ious,” “Worries,” “Nervous, highstrung, or tense,” and “Feels
too guilty.” The CBCL A/D syndrome scale demonstrates ex-
cellent psychometric properties. The test—retest reliability is
high for A/D (r = .82, Cronbach o« = 0.84; Achenbach & Res-
corla, 2001). Further, the stability of A/D is high, with Pear-
son rs of .68 and .56 reported for 12- and 24-month intervals,
respectively (Achenbach & Rescorla, 2001). Subjects in the
present study possessed T scores of 70 or below, and thus
none of the subjects obtained clinically significant scores.

DTI and quality control procedures

Preprocessed and quality-controlled FA data are publicly
available, and were downloaded directly from the NIH Nor-
mal Brain Development website (http:/pediatricmri.nih.
gov; Walker et al., 2015). The DTI protocol for the NIH Nor-
mal Brain Development study has been detailed in previous
reports (Evans, 2006; Walker et al., 2015; Walker, Curry,
Nayak, Lange, & Pierpaoli, 2013), as well as in documenta-
tion freely available online (http:/ndar.nih.gov/data_from_
labs.html). In summary, DTI data were collected at five of
the six participating centers using a 1.5-T Siemens scanner
(three sites) or GE scanner (two sites). DTI protocol imple-
mented a spin echo planar imaging (EPI) sequence with mini-
mum repetition time = 3 s, minimum achievable echo time
with full echo acquisition, axial slices (i.e., perpendicular to
the z axis of the magnet, not oblique), field of view, matrix,
and slice thickness adjusted to yield 3 x 3 x 3 mm?® voxels. Ac-
quisitions consisted of 48—60 contiguous slices, b values of 0
and 1000 s mm2 with six diffusion directions, repeated four
times without averaging, 4 x (1 xb=0smm™> + 6xb=1000s
mm~2), resulting in a total of 28 volumes. Resultant images
were reconstructed at their native resolution (without use of
zero filling or interpolation). The publicly available TOR-
TOISE processing pipeline was used to prepare the diffusion
data (Pierpaoli et al., 2010). Processing steps included: eddy
current distortion and motion correction (Rohde, Barnett,
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Basser, Marenco, & Pierpaoli, 2004); susceptibility-induced
EPI distortion correction (Wu et al., 2008) using T2W image
as a target for registration; and rigid reorientation into a com-
mon final space defined by the registered T2W image.

Information pertaining to NIH Normal Brain Develop-
ment DTT quality control can be found online (http:/ndar.
nih.gov/data_from_labs.html) and is provided here for the
reader’s reference. All diffusion imaging underwent rigorous
quality assessment in terms of adherence to study protocol, as
well as image quality. Each acquisition was rated on the fol-
lowing imaging parameters: brain coverage (top of the brain);
brain coverage (bottom of the brain); severity of ghosting ar-
tifact; artifacts affecting signal, such as spike noise, radiofre-
quency artifacts, or reconstruction artifacts; motion resulting
in signal dropout; occurrence of motion within volume (inter-
leave) misregistration, and severity of eddy current distor-
tions; severity of susceptibility induced EPI distortion; and
the pervasiveness of cardiac pulsation. For each of the above
categories, data were rated as 0 = no issue, 1 = minor, 2 =
moderate, or 3 = severe. Raters were blind to subjects’ behav-
ioral data, including A/D scores. Finally, the raw corrected
data (i.e., after processing with the TORTOISE pipeline)
were assessed on the following criteria: quality of motion
and eddy distortion correction; quality of susceptibility in-
duced EPI distortion correction; and visual assessment of
overall and regional (e.g., frontal, parietal, etc.) quality of ten-
sor-derived quantities. For each of these categories, data were
rated as 0 = perfect, | = minor problem, 2 = moderate prob-
lem, or 3 = major problem. Although postprocessing tech-
niques were applied in an attempt to correct for all artifacts
and distortions, a number of data sets were ultimately re-
jected. These data sets were removed from the database with
the aim of ensuring a standard level of quality. The Normal
Brain Development study was organized into two objectives.
Objective 1 included participants aged 4.5 years and older at
enrollment, whereas Objective 2 included participants who
were younger than 4.5 years of age at enrollment. Including
both Objective 1 and Objective 2 data, a total of 878 diffusion
scans were acquired as part of the larger NIH study (Walker
etal., 2016). A total of 498 diffusion scans (from 274 unique
subjects) were included in the database, with the total number
of rejected acquisitions equaling 380 (43.3% of total number
of acquisitions; Walker et al., 2016). Data in the present study
were only from the Objective 1 cohort. Reasons for rejection
of diffusion data for the Objective 1 cohort are enumerated in
Table 1. Deviations from the imaging acquisition protocol
accounted for more than 85% of rejections. Thus, the over-
whelming majority of rejections were independent of partic-
ipant characteristics and, instead, an unfortunate reflection of
data sets being acquired with inconsistent voxel sizes.

Statistical analyses

Registration of subjects’ FA data was performed using the
Tract-Based Spatial Statistics stream, which is part of the
FSL software package (Smith et al., 2004, 2006). All sub-
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Table 1. Reason for rejection of diffusion data for the
Objective 1 cohort

Reason for Rejection DTI
Motion with or without protocol errors 11
Artifacts (spike noise, ghosting, etc.) 31
Artifacts combined with protocol errors 17
Uncorrectable eddy current distortions combined with
protocol errors 92
Incorrect image matrix size/resolution 76
Other protocol errors (including incomplete acquisition) 67
Total 294

Note: DTI, Diffusion tensor imaging.

jects’ FA data were aligned into Montreal Neurological Insti-
tute 152 space using the nonlinear registration tool FNIRT,
which uses a b-spline representation of the registration warp
field (Rueckert et al., 1999). Next, the mean FA image was
created and thinned in order to produce a mean FA skeleton.
To test the hypothesis that CBCL A/D symptoms are associ-
ated with microstructural development of fiber pathways,
tracts of interest were defined using the Johns Hopkins Uni-
versity white matter tractography atlas (probability threshold
of 25%). For each available diffusion scan, average FA values
were obtained for 14 white matter tracts. These tracts included
the left and right superior longitudinal fasciculus, inferior
longitudinal fasciculus, anterior thalamic radiation, cingulum
bundle, uncinate fasciculus, corticospinal tract, as well as for-
ceps major and forceps minor. Using FSL, mean FA values
for all white matter pathways were calculated for all subjects
at all time points.

Mean FA values were subsequently imported into the sta-
tistical software package, IBM SPSS Statistics 21 (SPSS Inc.,
Chicago). To test our hypothesis, linear mixed-effects models
were employed within SPSS. Mixed-effects models provide a
way in which to analyze unbalanced longitudinal data, while
maximizing statistical power (i.e., utilizing all available data;
Diggle, 2002; Shaw et al., 2011; Singer & Willett, 2003).
Using a first-order autoregressive model, subject ID was en-
tered as a random effect in order to account for within-indi-
vidual dependence. Age, intracranial volume (ICV), gender,
and scanner were statistically controlled for in analyses.
ICV was included as a covariate based on research indicating
that diffusion metrics such as FA are influenced by head size
(Takao, Hayashi, Inano, & Ohtomo, 2011). In order to test the
degree to which CBCL A/D moderates the relationship be-
tween age and microstructural organization, the following
model was run for each of the 14 tracts:

Mean FA = intercept + d; + B, (Age) + B,(ICV)
+ B5(Gender) 4 B,(Scanner) + Bs(CBCL A/D)
+Bg(Age x CBCL A/D) +e,

M. D. Albaugh et al.

where d; represents the random effect of subject ID and e cor-
responds to residual error. Given our a priori hypothesis, we
were primarily interested in the significance of the Age x
CBCL A/D interaction term.

Given that the Age x CBCL A/D interaction was being
tested in 14 different tracts, our threshold for statistical signif-
icance was adjusted accordingly. A Bonferroni adjustment re-
sulted in a corrected significance threshold of p < .0154, ac-
counting for the average correlation in mean FA values across
the 14 white matter tracts (r = .553).

Results

Demographics

A total of 175 subjects (91 females, 84 males; 241 scans)
were analyzed in the present study. Of the 175 subjects,
118 subjects had imaging and behavioral data available for
only one visit, and 57 subjects had data available at two or
more visits. At time of scan, subjects ranged from 5.7 to
18.4 years of age, with a mean age of 12.4 years (SD = 3.2
years; see online-only supplementary Figure S.1). The
mean CBCL A/D raw score was 1.7 (SD = 1.9). Preliminary
analyses revealed that CBCL A/D score was not significantly
associated with study site, gender, or age. Further, there was
no evidence of a Gender x Age interaction on CBCL A/D
scores in this sample. Demographic information for the pres-
ent sample as well as the larger Normal Brain Development
study is shown in Table 2. Participants in the current sample
were older relative to the larger NIH Normal Brain Develop-
ment cohort (¢ = 2.13, p = .03), but did not differ with regard
to CBCL A/D score (t = 0.36, p = .72). Further, when com-
pared to the larger sample, the present sample did not differ
with regard to race (x> = 2.14, p = .83) or gender (x> =
0.00, p = 1.00).

Diffusion imaging

As afirst step, models were run without the Age x CBCL A/D
interaction term. Across all tracts, there was no main associa-
tion between CBCL A/D and mean FA while controlling for
the effects of age, gender, ICV, and scanner site. However,
the Age x CBCL A/D interaction was significantly associated
with mean FA in six white matter tracts: the left superior lon-
gitudinal fasciculus (SLF), left and right anterior thalamic ra-
diation, left and right inferior longitudinal fasciculi, and the
right cingulum bundle (Figure 1). Results are summarized
in Table 3. The results were not meaningfully altered when
quality control ratings of motion artifact were entered as a co-
variate.

The Age x CBCL A/D interaction on FA was subsequently
decomposed using simple slope tests. Across all significant
tracts, greater age-related FA increases were observed at lower
levels of A/D (Figure 2; an example of a scatterplot with raw
diffusion data is provided in online-only supplemental
Figure S.2).
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Table 2. Demographic information

Larger Cohort (N = 431)

Current Sample (N = 175)

Age M = 11.8 years, SD = 4.1 years, 1,074 time points

Gender
Race

52% Female (224), 48% male (207)
African American/Black 9.28%

American Indian or Alasitan Native 0.23%

Asian 1.62%

White 81.44%

Not provided 6.73%

Mixed 0.70%
Household income Median income bracket =

CBCL A/D raw score

7.00 ($50,000-$75,000)
M = 1.61, SD = 1.95, based on 913 observations

M = 12.4 years, SD = 3.2 years, 241 time points
52% Female (91), 48% male (84)

African American/Black 9.30%

American Indian or Alaskan Native 0.58%

Asian 1.74%

White 83.14%

Not provided 4.65%

Mixed 0.58%

Median income bracket = 7.00 ($50,000-$75,000)
M = 1.66, SD = 1.89, based on 241 observations

Note: CBCL A/D, Child Behavior Checklist anxious/depressed.

Discussion

To the best of our knowledge, this is the first study to report an
association between age-related changes in white matter
microstructure and anxious/depressed symptoms among
healthy, typically developing youths. As hypothesized, anx-
ious/depressed symptoms were associated with the rate of mi-
crostructural development within a number of white matter
pathways. Specifically, anxious/depressed symptomatology
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'SLF

Right
Cingulum

Left
ATR

was associated with reduced rates of age-related increases in
FA within bilateral anterior thalamic radiation, bilateral inferior
longitudinal fasciculi, the left SLF, and right cingulum. Con-
trolling for quality control variables, including motion artifact,
did not meaningfully alter our results. Taken together, these re-
sults support the notion of anxious/depressed symptoms in
children and adolescents being tied to neurodevelopment, not
only at the level of the cortex (Ducharme et al., 2014; Newman
et al., 2015), but also at the level of the cerebral white matter.

Right
Cingulum

/s

]
Right ATR
Right ILF

Left ILF

Figure 1. (Color online) Tracts in which mean fractional anisotropy is associated with an Age x Anxious/Depressed interaction. Three-
dimensional rendering of white matter tracts in which Child Behavior Checklist anxious/depressed scores qualified age-related increases in
mean fractional anisotropy. Tracts are displayed overlaid upon the Montreal Neurological Institute 152 1-mm brain template.



Table 3. Significance of Age x Anxious/
Depressed interaction on mean fractional

anisotropy

Tract t p
Left SLF —3.589 .0004¢
Left ILF —3.241 .001¢
Right cingulum —3.087 .002¢
Left ant. thal. —2.775 .0064
Right ant. thal. —2.722 .007¢
Right ILF —2.67 .008¢
Left cingulum —2.388 .018
Left CST —1.846 .067
Right SLF —1.84 .068
Forceps major —1.682 .094
Forceps minor —1.632 .104
Right CST —0.977 .33
Right uncinate —0.791 43
Left uncinate —0.13 .897

Note: SLF, Superior longitudinal fasciculus; ILF, inferior
longitudinal fasciculi; ant. thal., anterior thalamic radia-
tion; CST, corticospinal tract.

“Significance at the Bonferroni-corrected threshold (p <
.0154).

With the advent of advanced structural neuroimaging anal-
yses, certain forms of developmental psychopathology have
been tied to structural brain development. In recent years,
for example, neuroimaging studies of cerebral cortical mor-
phology have provided compelling evidence that attention-
deficit/hyperactivity disorder symptoms are associated with
lagging cortical development, particularly within the fronto-
parietal areas of the cortex (Ducharme et al., 2012; Shaw
et al., 2007, 2011). Despite such findings, few studies have
examined the relationship between internalizing symptoms
and structural brain development. Two recent studies, study-
ing large samples of typically developing youths, have pro-
vided support for anxiety symptomatology being related to
indices of cerebral cortical maturation (Ducharme et al.,
2014; Newman et al., 2015). A possible link between anx-
ious/depressed symptoms and delayed brain maturation is fur-
ther supported by clinical observations, such as mood and
anxiety symptoms in adolescence being associated with de-
layed attainment of early developmental milestones (Colman
etal., 2014; North, Wild, Zwaigenbaum, & Colman, 2013). It
is reasonable that such behavioral delays are underpinned by
protracted maturation of brain circuitry.

It is noteworthy that previous neuroimaging studies have
reported associations between FA and internalizing symp-
toms among older, healthy participants (Kim & Whalen,
2009; Westlye et al., 2011). In a large study of 263 healthy
adults, Westlye et al. (2011) reported that harm avoidance,
an anxiety-related personality trait and risk factor for mood
and anxiety psychopathology, was negatively associated
with FA in the bilateral anterior thalamic radiations, cingulum
bundle, inferior longitudinal fasciculus, superior longitudinal
fasciculus, as well as several other white matter pathways

M. D. Albaugh et al.

(Westlye et al., 2011). The white matter regions in which
Westlye et al. (2011) revealed negative associations between
harm avoidance and FA overlap with areas in which we found
associations between FA and an Age x CBCL A/D interac-
tion. It is possible that the reduced rate of age-related FA in-
creases among youths with higher A/D scores (reported in the
present study) may underpin the negative association between
FA and anxiety symptoms reported in adults.

It is interesting that results from the present study also show
some degree of overlap with imaging studies of clinically sig-
nificant mood and anxiety symptoms. Young adults with ma-
jor depressive disorder have been found to possess reduced FA
in the left SLF and right anterior thalamic radiation when com-
pared to healthy age-matched controls (Lai & Wu, 2014). In a
meta-analysis of diffusion imaging studies on major depressive
disorder, reduced FA in the left SLF was revealed as a stable
finding across studies (Murphy & Frodl, 2011). These findings
suggest that, to some extent, clinical and subclinical forms of
internalizing psychopathology may share common neural sub-
strates. As a result, present findings also dovetail with the no-
tion of certain forms of developmental psychopathology repre-
senting dimensional, quantitative traits that fall along continua
(Hudziak, Achenbach, Althoff, & Pine, 2007).

This study possesses a number of limitations that must be
considered. The diffusion data used in this study possessed
low angular resolution. It would have been advantageous to ac-
quire 24 unique, nonredundant, noncollinear diffusion direc-
tions and 4 b = 0 volumes (given that the present study col-
lected 28 volumes). Unfortunately, this was not the standard
at the time the study was launched: high angular resolution dif-
fusion was not available in a form that could be implemented
on both GE and Siemens scanners. As a result, we are unable to
implement fiber-tracking methods that would allow for more
precise anatomical investigation. That being said, previous re-
search indicates that, when taking a region of interest approach,
FA values are not significantly different when data are acquired
at 6, 21, and 31 diffusion-encoded gradient directions (Ni,
Kavcic, Zhu, Ekholm, & Zhong, 2006). Although we have at-
tempted to control for confounds such as motion artifact, we
cannot rule out the possibility that the quality of our diffusion
data may have influenced our results. Future studies are needed
to replicate our findings, using higher resolution data acquired
with a greater number of diffusion directions. Another method-
ological limitation is the high percentage of diffusion scans that
deviated from the imaging acquisition protocol. As a result, it
is possible that the sample used in the present study was not
representative of the larger NIH Normal Brain Development
sample. That being said, youths in the present study did not dif-
fer with regard to racial background, median household in-
come, gender, or anxious/depressed score when compared to
the larger study sample.

This study possesses a number of methodological strengths.
In particular, we utilized a large sample of typically developing
youths who were extensively screened for clinically significant
psychiatric problems, as well as for family history of psychiat-
ric mood or anxiety disorders. Furthermore, in order to charac-
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Figure 2. (Color online) Decomposition of Age x Anxious/Depressed interaction. Results for post-hoc simple slopes tests characterizing the
statistical relation between age and mean fractional anisotropy of tracts at varying levels of Child Behavior Checklist anxious/depressed scores

(i.e., minimum, median, 1 SD above median, and 2 SD above median).

terize subclinical internalizing problems in these healthy
youths, we used quantitative, empirically based assessment
measures of emotional and behavioral problems. This work
strongly resonates with the research domain criteria initiative,
emphasizing the importance of neurodevelopmental research
focusing on evidence-based dimensional constructs in typi-
cally developing youths (Insel et al., 2010).

In conclusion, this is the first report of an association be-
tween anxious/depressed symptoms and white matter micro-
structural development. These results seemingly complement
our group’s previous report of anxious/depressed symptoms
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