2016

A Narnavirus in the trypanosomatid protist plant pathogen Phytomonas serpens

Natalia S. Akopyants
Washington University School of Medicine in St. Louis

Lon-Fye Lye
Washington University School of Medicine in St. Louis

Deborah E. Dobson
Washington University School of Medicine in St. Louis

Julius Lukes
University of South Bohemia

Stephen M. Beverley
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Akopyants, Natalia S.; Lye, Lon-Fye; Dobson, Deborah E.; Lukes, Julius; and Beverley, Stephen M., "A Narnavirus in the trypanosomatid protist plant pathogen Phytomonas serpens." Genome Announcements.4,4. e00711-16. (2016).
https://digitalcommons.wustl.edu/open_access_pubs/5282

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
A Narnavirus in the Trypanosomatid Protist Plant Pathogen Phytomonas serpens

Natalia S. Akopyants,a Lon-Fye Lye,a Deborah E. Dobson,a Julius Lukeš,a,c Stephen M. Beverleya

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA; Biology Centre and Faculty of Sciences, Institute of Parasitology, University of South Bohemia, České Budějovice, Czech Republic; Canadian Institute for Advanced Research, Toronto, Ontario, Canada

We describe here a new RNA virus (PserNV1) from the plant protist parasite Phytomonas serpens (family Trypanosomatidae, Kinetoplastida, supergroup Excavata). The properties of PserNV1 permit assignment to the genus Narnavirus (Narnaviridae), the first reported from a host other than fungi or oomycetes.

Viruses within the family Narnaviridae are composed of a positive single-stranded RNA segment (2.3 to 3.6 kb) encoding a single protein, the RNA-dependent RNA polymerase (RDRP) (1–3). Narnavirus derives from “naked RNA,” reflecting the absence of a capsid or envelope, and narnaviruses do not form infectious viral particles. Two genera are recognized: Mitivirus, found in the mitochondrion of fungi and translated using the mitochondrial genetic code, and cytoplasmic Narnavirus, comprising the 20S/23S elements of Saccharomyces cerevisiae and one from the oomycete Phytophthora infestans (3–5). Here, we report the discovery and complete genome sequence (including termini) of Phytomonas serpens narnavirus 1 (PserNV1).

Total cellular RNA from P. serpens isolate 9T (6) was extracted using TRIzol reagent (Thermo Fisher), treated with DNase I (Thermo Fisher) at 37°C for 45 min, and purified with RNA Clean & Concentrator-25 (Zymo Research). Replicative viral double-stranded RNAs (dsRNAs) were visualized following treatment with S1 nuclease (Thermo Fisher), separation by agarose gel electrophoresis, and visualization by ethidium bromide staining (7). A prominent dsRNA band of about 4 kb was observed, eluted, and used as a template to generate a cDNA library, with fragment sizes ranging from 200 to 600 nucleotides (nt). A multiplexed TruSeq RNA library was sequenced (2 × 101 cycles, paired-end reads) on the HiSeq 2500 (Illumina). A total of 64,373 reads were obtained, of which 47,690 assembled into a single contig, which was confirmed by reverse transcriptase PCR and sequencing. The adaptor (5'-PO4-CCCGTCGTT TGCTGGCTCTTT-NH2) was added to the eluted RNA band with potential roles of this viral element in plant pathogenicity (1). Members of the genus Phytomonas affect >100 plant species, including economically important plants, such as coffee, coconut, cassava, and oil palms (8), which may bear relatives of PserNV1. Classification as a narnavirus suggests that PserNV1 differs from the virus-like particles described previously in other Phytomonas species. (9) Some data suggest that PserNV1 may be unstable during culture, as reverse transcriptase PCR tests of this strain acquired independently from another source did not reveal PserNV1 (the authenticity of this strain was confirmed by sequence of two nuclear genes, GAPDH and PTR1). In the future, studies of NV1-positive and -negative lines of Phytomonas may establish potential roles of this viral element in plant pathogenicity (1).

Nucleotide sequence accession number. The full-length viral genomic sequence of PserNV1 from Phytomonas serpens 9T strain was deposited in GenBank under the accession no. KU882057.

ACKNOWLEDGMENTS

We thank members of our laboratory, Nicolas Fasel and Vyacheslav Yurchenko, for discussions, and colleagues who provided Phytomonas strains that had been cultured independently.

This work was supported by NIH AID R56 AI099364 and AI29646 to S.M.B. Next-generation sequencing was performed at the Washington University School of Medicine, Department of Genetics Genome Technology Access Center (partially supported by grants NCI Cancer Center Support P30 CA91842 and NCRR ICTS/CTSA UL1 TR000448).

FUNDING INFORMATION

This work, including the efforts of Natalia S. Akopyants, Lon-Fye Lye, Deborah E. Dobson, and Stephen M. Beverley, was funded by HHS | NIH | National Cancer Institute (NCI) (P30-CA91842). This work, including the efforts of Natalia S. Akopyants, Lon-Fye Lye, Deborah E. Dobson, and Stephen M. Beverley, was funded by HHS | National Institutes of Health (NIH) (R01-AI29646, R56-...
REFERENCES

