[124I]FIAU: Human dosimetry and infection imaging in patients with suspected prosthetic joint infection

Barry A. Siegel
Washington University School of Medicine in St. Louis
et al

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/5870

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
[124I]FIAU: Human dosimetry and infection imaging in patients with suspected prosthetic joint infection

Xiaoyan M. Zhang a,⁎, Halle H. Zhang a, Patrick McLeroth b, Richard D. Berkowitz c, Michael A. Mont d, Michael G. Stabin e, Barry A. Siegel f, Abass Alavi g, T. Marc Barnett h, Jeffrey Gellb b, Chantal Petit b, John Spalto b, Steve Y. Cho i, Martin G. Pomper j, James J. Conklin k, Chetan Bettegowda l, Saurabh Saha a,⁎

a BioMed Valley Discoveries Inc., Kansas City, Missouri
b Covance, Princeton, New Jersey
Phoenix Clinical Research, Tamara, Florida
c Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee
d Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
e Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
f Mission Hospital, Asheville, North Carolina
g Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
h Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland
i ICON Medical Imaging, Warrington, Pennsylvania
j Department of Radiology, The Johns Hopkins Medical Institutes, Baltimore, Maryland

Abstract

Introduction: Fialuridine (FIAU) is a nucleoside analog that is a substrate for bacterial thymidine kinase (TK). Once phosphorylated by TK, [124I]FIAU becomes trapped within bacteria and can be detected with positron emission tomography/computed tomography (PET/CT). [124I]FIAU PET/CT has been shown to detect bacteria in patients with musculoskeletal bacterial infections. Accurate diagnosis of prosthetic joint infections (PJIs) has proven challenging because of the lack of a well-validated reference. In the current study, we assessed biodistribution and dosimetry of [124I]FIAU, and investigated whether [124I]FIAU PET/CT can diagnose PJIs with acceptable accuracy.

Methods: To assess biodistribution and dosimetry, six subjects with suspected hip or knee PJI and six healthy subjects underwent serial PET/CT after being dosed with 74 MBq (2 mCi) [124I]FIAU intravenously (IV). Estimated radiation doses were calculated with the OLINDA/EXM software. To determine accuracy of [124I]FIAU, 22 subjects with suspected hip or knee PJI were scanned at 2–6 and 24–30 h post IV injection of 185 MBq (5 mCi) [124I]FIAU. Images were interpreted by a single reader blinded to clinical information. Representative cases were reviewed by 3 additional readers. The utility of [124I]FIAU to detect PJIs was assessed based on the correlation of the patient's infection status with imaging results as determined by an independent adjudication board (IAB).

Results: The kidney, liver, spleen, and urinary bladder received the highest radiation doses of [124I]FIAU. The effective dose was 0.16 to 0.20 mSv/MBq and doses to most organs ranged from 0.11 to 0.76 mGy/MBq. PET image quality obtained from PJI patients was confounded by metal artifacts from the prostheses and pronounced FIAU uptake in muscle. Consequently, a correlation with infection status and imaging results could not be established.

Conclusions: [124I]FIAU was well-tolerated in healthy volunteers and subjects with suspected PJI, and had acceptable dosimetry. However, the utility of [124I]FIAU for the clinical detection of PJIs is limited by poor image quality and low specificity.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A major challenge in the treatment of prosthetic joint infection (PJI) is the difficulty in distinguishing infection from sterile inflammation. Often, there is uncertainty regarding whether a prosthetic joint is infected or simply loose. Multiple factors currently considered by clinicians attempting to make a diagnosis include medical history; physical...
imaging agents to diagnose PJI, but all have important limitations in unnecessary invasive procedures, such as single or multi-staged Conversely, a false-positive diagnosis of prosthetic infection may result with biotic treatment, risks early failure and infection recrudescence. A misdiagnosis has important consequences. If infection is where the level of diagnostic certainty is low, especially for infections caused by indolent organisms or those with fastidious growth requirements. A misdiagnosis has important consequences. If infection is missed, prosthetic revision without appropriate débridement and anti-biotic treatment, risks early failure and infection recrudescence. Conversely, a false-positive diagnosis of prosthetic infection may result in unnecessary invasive procedures, such as single or multi-staged revisions.

Various radiopharmaceuticals have been investigated as potential imaging agents to diagnose PJ, but all have important limitations. Bone-seeking tracers such as 99mTc-labeled diphosphonates, is used extensively to assist the clinical management of numerous osseous pathologies and is characterized by high sensitivity but low specificity for diagnosis of PJ. At the present time, bone scintigraphy is used primarily for screening purposes to exclude the possibility of any kind of loosening of the prosthesis. In vitro radiolabeled leukocyte scintigraphy has been extensively studied for diagnosis of prosthesis infection but has also yielded variable and often contradictory results. This has been attributed to differences in acquisition, analysis, and interpretation protocols between investigators and in patient characteristics impacting sensitivity (presence of biofilm around the infected prosthesis and influence of antibiotics) or specificity (non-specific inflammation and interference from ectopic bone marrow) [12]. Enhanced techniques (late leukocyte scintigraphy, dual or serial time point leukocyte scintigraphy, in vivo labeled leukocyte scintigraphy) and combination modalities with bone scintigraphy, bone marrow scintigraphy, SPECT or SPECT/CT have been developed, some with important improvement on the accuracy of infection diagnosis [13]. However, the complex labeling procedures, the need to handle hazardous blood products, and cost remain disadvantages for labeled leukocyte-based modalities [11,14]. Other techniques such as [18F]Fluorodeoxyglucose ([18F]FDG) PET and scintigraphy with the radiolabeled antibiotic 99mTc-ciprofloxacin (Infecton) have also been studied but neither is able to consistently differentiate infection from aseptic inflammation. The published results on the role of FDG PET in diagnosing PJ are controversial, reflecting the challenges in image interpretation criteria, generation of artifacts, uptake by activated macrophages around inflamed prostheses, and the nonspecific uptake by healing tissues post arthroplasty surgery [12,13]. The discrepancy in the reported Infecton performance was probably due to biofilm, low bacteria count or resistance, and different labeling kit formulations [12]. Therefore, radiopharmaceuticals that can reliably differentiate infection from aseptic inflammation yet can be prepared routinely with commercially available materials are warranted.

Preclinical data from a mouse model of infection demonstrated that localized infections could be readily imaged with 124I-FIAU, a nucleoside analog that is a substrate for bacterial thymidine kinase (TK) and labels bacteria at infection sites [15]. Subsequently, positron emission tomography (PET) with 124I-FIAU was evaluated in a small human study of eight patients with suspected musculoskeletal infections and one control subject [16]. The [124I]FIAU findings of infection versus non-infection in all eight patients were consistent with those made based on preoperative and intraoperative assessments, including cultures. The preclinical and limited clinical data suggest that [124I]FIAU might be a promising agent for diagnosing infections, including PJ.

This prospective study assessed the dosimetry and safety of [124I]FIAU in humans and the utility of [124I]FIAU PET/CT in diagnosing PJ.

2. Materials and methods

This study was conducted in two parts. Part I, a phase 1 trial (http://clinicaltrials.gov, NCT01337466) in two centers (Supplemental Table S1), evaluated biodistribution and dosimetry of [124I]FIAU by PET/CT in patients with hip or knee PJ and healthy subjects. Part II, a phase 2 trial (http://clinicaltrials.gov, NCT01705496) in 8 centers (Supplemental Table S1), evaluated the sensitivity and specificity of [124I]FIAU PET/CT in patients presenting with pain in a prosthetic knee or hip. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/ or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

2.1. Patients and Eligibility Criteria

Both trials were approved by the respective institutional review boards at the participating sites. Prior to enrollment, all subjects gave written informed consent.

Subjects with suspected PJ were required to have a prosthetic joint implant in situ for ≥3 months prior to enrollment and were required to have operative intervention planned within 30 days following study enrollment. Women were either postmenopausal or surgically sterile. Subjects with a history of an inherited mitochondrial disorder, abnormal liver function, or hypersensitivity to iodine were excluded. No subjects, except for one, received antibiotics in the 2 weeks preceding imaging.

For thyroid protection, either saturated solution of potassium iodide (SSKI) or Lugol’s iodine was administered 1 h prior to dosing and continued for 7 days. Alternatively, potassium iodide tablets were administered beginning 1 day prior to dosing and continued for 8 days.

A total of 12 subjects (6 healthy and 6 with suspected PJ) were enrolled in the phase 1 study and each received a single dose of 70.67–86.58 MBq (1.91–2.34 mCi) [124I]FIAU (except for 1 subject receiving 45.88 MBq because of a calibration error). The subjects underwent whole-body PET/CT immediately after injection. Imaging was repeated at 2, 4, and 6 h after dosing for all subjects; additional imaging at 24, 48, and 72 h after dosing was required for healthy subjects and optional for subjects with suspected PJ. A low-dose CT protocol, performed at 120 kVp and with mA as low as reasonably achievable, was used for attenuation correction. The effective dose for each CT scan at the two phase 1 sites was approximately 1.5–2 mSv. The PET data from 10 subjects were used for estimation of dosimetry; images for the other 2 subjects were excluded from the dosimetry analysis because of image acquisition and/or decay-correction errors.

For the phase 2 trial, 22 subjects with suspected PJ received a single dose of 159.5–210.9 MBq (4.3–5.7 mCi) [124I]FIAU and 19 completed the study. Two subjects discontinued early as “lost to follow-up”, and one subject withdrew from the study. PET/CT of the area of interest (hip or knee) was performed twice, 2–6 and 24–30 h, respectively, after dosing.

Safety was assessed by adverse event and vital sign monitoring, clinical laboratory tests (serum chemistry including liver function tests, complete blood count, and CRP), and physical examination for up to 30 days after dosing. All 34 subjects from both phase 1 and 2 were included in the safety analysis.

2.2. Radiopharmaceutical

Each dose of [124I]FIAU ([124I]-[2-deoxy-2-fluoro-β-D-arabinofuranosyl]-5-ido-2,4(1 H,3 H)-pyrimidinedione) was produced individually by 3D Imaging LLC. The specific activity was characterized as 999–1295 GBq (27–35 Ci)/μmol (carrier-free), with >90% radiochemical purity (remainder sodium iodide), and >99% radionuclidic purity (remainder I-125). The administered mass of FIAU was up to 0.12 μg.
[124]FIAU was supplied and shipped as a ready-to-inject sterile isotonic saline solution with 5% ethyl alcohol as anti-radiolytic agent and 50 mM of sodium phosphate as buffering agent, pH 5.5–8.5 with a shelf life of one half-life of 124I (4.2 days from synthesis time).

2.3. Image Analysis

Attenuation-corrected PET images were reconstructed with an iterative reconstruction based on scanner manufacturer’s recommendations. The 3–5 mm thick transaxial CT images were reconstructed at contiguous intervals (or manufacturer’s recommendation for overlap) for fusion with the transaxial PET images. CT, attenuation-corrected (AC) PET, metallic artifact algorithm attenuation-corrected PET (if available), and non-attenuation-corrected (NAC) PET images were generated and submitted to Icon Medical Imaging (IMI) for central archiving and data analysis using a proprietary Medical Image Review and Analysis (MIRA™) system.

PET image review was conducted using dedicated PET software from MIM Software. The collected data were presented to a single reader (JJC), blinded to clinical information, in sequential order, for a qualitative assessment of both AC and NAC PET images. Target-to-background ratios using the suspected infected joint as the target and the contralateral muscle mass as the background, and standardized uptake values (SUVmax, SUVmean and SUVpeak) were assessed. Representative cases were then presented to 3 additional readers (BAS, AA, SJC) for further evaluation.

2.4. Biodistribution and Dosimetry

Radioactivity concentrations were determined in various organs by extraction of counts data from PET images using MIPAV software [17]. Activity in each visualized organ and the total body were expressed as fractions of injected activity, normalizing the activity in the whole body at the earliest time point to 100% of the administered activity. Values of the fraction of injected activity per organ were fit using SAAM II software [18]. Time-activity integrals [19] were entered into OLINDA/EXM software [20], using the adult-male model. Tracer clearance was assumed to only occur via urinary excretion; the whole-body retention curve was used to establish the kinetics of urinary excretion. Calculations were made for assumed 3.5, 2.0 and 1.0 h bladder voiding intervals. Theoretical calculations were also performed, assuming bladder voiding intervals of 1.0, 2.0, and 3.5 h after initial administration of [124]FIAU, respectively. The effective dose (ED) of [124]FIAU was approximately 0.16, 0.18, and 0.20 mSv/MBq, under the assumed voiding intervals (Table 1). Accordingly, for an administered activity of 185 MBq (5 mCi), the ED ranged from 29.5 to 36.0 mSv for the three voiding intervals.

Based on model estimates, assuming complete renal obstruction (Table 1; i.e., all elimination by radioactive decay), the kidney dose approximated 6.4 mGy/MBq and the ED approximated 0.29 mSv/MBq. Imaging optimization and image quality was improved during the conduct of the study. Photopenic areas (noted in areas of abdomen or lower torso) were eliminated and/or reduced by changing the acquisition mode from 3D to 2D on the GE DST scanner (data not shown).

3. Results

3.1. Biodistribution and Dosimetry

The primary objective of the phase 1 study was to determine the biodistribution and dosimetry of [124]FIAU. Results showed that the kidney, liver, spleen, and urinary bladder received the highest radiation exposure with [124]FIAU (Fig. 1). All data were fit well with one or two exponential functions.

Radiation exposures to most organs ranged from 0.1 to 0.8 mGy/MBq, with urinary bladder wall receiving 0.32, 0.49, and 0.76 mGy/MBq with bladder voiding intervals of 1.0, 2.0, and 3.5 h after initial administration of [124]FIAU. The effective dose (ED) of [124]FIAU was approximately 0.18 mSv/MBq, with the ED approximated 0.20 mSv/MBq.

3.2. [124]FIAU PET/CT Findings in Subjects With Suspected PJI

The utility of [124]FIAU PET/CT for detection of PJI was assessed by correlating scan findings determined by an independent image reviewer and the infection status assessed by the IAB. The findings were confirmed by 3 additional readers reviewing representative cases. The PET/CT interpreters relied on both AC and NAC scans for their final decision.

All [124]FIAU PET/CT images revealed strong signals around the metal prosthesis, indicating metal artifacts from CT-based attenuation correction [21]. The NAC PET images often showed dramatically reduced counts around the prosthesis, confirming that the increased PET signal around the prosthesis on AC images was most likely attributable to metal artifact, obscuring any specific but weak bacterial uptake signal. Also noted in all PET images was pronounced diffuse muscle uptake. None of the semiquantitative measures (target-to-background ratio, SUVmax, SUVmean and SUVpeak) provided a unique signature for infection that was not confounded by artifacts or muscle uptake of the tracer around the prostheses.

Among the 19 subjects with suspected PJI who completed the phase 2 study, 4 were treated as infected by the operating surgeons, although the IAB considered only 3 as infected based on the pre-defined PJI criteria. One of these three subjects (Table S2) had bilateral knee replacements, and left-sided PJI was suspected. Two of 6 samples taken from suspected areas of infection during surgery were culture positive for coagulase-negative Staphylococcus, and thus categorized as infected by the IAB. On the 27-h PET/CT images (Fig. 2), while metal artifacts, as indicated by bilateral posterior focal uptake (Fig. 2A), and muscle uptake (Fig. 2B) were both prominent, there was an area of greater signal in the left anterior knee by comparison with the right knee, suggesting potential bacterial uptake (Fig. 2C). Another subject (Table S3) studied at the same site and imaged with the same scanner, had a right knee replacement in 2009, but had experienced constant pain ever since. None of the pre-operative tests suggested infection. No evidence of acute inflammation or loosening was observed during surgery. Intra-operative frozen section revealed synovial tissue with chronic inflammation, granulation tissue, and reactive changes, but neither histopathology
nor cultures of 6 surgical samples showed evidence of infection. Therefore, the joint was considered uninfected by both the surgeon and the IAB. Discordantly, intense \(^{124}\text{I}\)FIAU uptake was detected in the prosthetic knee and muscles (Fig. 3).

The independent PET/CT image reviewers had difficulty differentiating uninfected from infected cases based only on regional \(^{124}\text{I}\)FIAU uptake, primarily because of the metal artifact and high muscle background. Consequently, an independent image review charter could not be defined to guide the assessment of the PET and PET/CT images. No correlation could be established between infection status based on all clinical information and the blinded assessment of the PET/CT images.

3.3 Safety

\(^{124}\text{I}\)FIAU was well tolerated in healthy volunteers and subjects with suspected PJI. None of 9 adverse events (AEs) reported in the phase 1 trial was considered to be related to the study drug, none was severe, and none led to study discontinuation. Overall, 15 subjects (68.2%) from the phase 2 trial experienced AEs. However, only 2 patients, who each noted paresthesias and injection site pain, had study drug-related AEs that were mild and occurred only on the day of dosing. Only 3 AEs were severe, but none led to study discontinuation. Three subjects experienced SAEs (2 in phase 1: gastric ulcer with hemorrhage, and pain; and 1 in the phase 2: severe drug hypersensitivity to a concomitant medicine), but none of the SAEs was considered to be study drug related.

There were no clinically detectable pharmacologic effects attributable to administration of \(^{124}\text{I}\)FIAU.

Table 1

| Average Normal Organ Dosimetry for All Subjects in Phase 1 Clinical Study. |
|-----------------|-----------------|-----------------|-----------------|
| Clr. 3.5 h void interval | Clr. 2.0 h void interval | Clr. 1.0 h void interval | Clr. Complete renal obstruction |
| mGy/MBq | mGy/MBq | mGy/MBq | mGy/MBq |
| Adrenals | 1.68E-01 | 1.68E-01 | 1.68E-01 | 4.81E-01 |
| Brain | 1.24E-01 | 1.24E-01 | 1.24E-01 | 1.97E-01 |
| Breasts | 1.16E-01 | 1.16E-01 | 1.16E-01 | 1.93E-01 |
| Gallbladder wall | 1.72E-01 | 1.72E-01 | 1.72E-01 | 3.76E-01 |
| LLI wall | 1.77E-01 | 1.77E-01 | 1.72E-01 | 2.84E-01 |
| Small intestine | 1.73E-01 | 1.73E-01 | 1.73E-01 | 3.34E-01 |
| Stomach wall | 1.62E-01 | 1.62E-01 | 1.62E-01 | 3.27E-01 |
| ULI wall | 1.73E-01 | 1.70E-01 | 1.69E-01 | 3.24E-01 |
| Heart wall | 1.89E-01 | 1.89E-01 | 1.89E-01 | 2.73E-01 |
| Kidneys | 3.08E-01 | 3.08E-01 | 3.07E-01 | 6.42E+00 |
| Liver | 1.49E-01 | 1.49E-01 | 1.49E-01 | 2.74E-01 |
| Lungs | 1.41E-01 | 1.41E-01 | 1.41E-01 | 2.42E-01 |
| Muscle | 1.43E-01 | 1.41E-01 | 1.39E-01 | 2.51E-01 |
| Ovaries | 1.89E-01 | 1.81E-01 | 1.76E-01 | 2.97E-01 |
| Pancreas | 1.77E-01 | 1.76E-01 | 1.76E-01 | 4.10E-01 |
| Red marrow | 1.35E-01 | 1.34E-01 | 1.33E-01 | 2.66E-01 |
| Osteogenic cells | 2.04E-01 | 2.03E-01 | 2.03E-01 | 3.47E-01 |
| Skin | 1.09E-01 | 1.09E-01 | 1.08E-01 | 1.87E-01 |
| Spleen | 2.23E-01 | 2.23E-01 | 2.23E-01 | 4.57E-01 |
| Testes | 1.50E-01 | 1.45E-01 | 1.41E-01 | 2.21E-01 |
| Thymin | 1.46E-01 | 1.46E-01 | 1.46E-01 | 2.38E-01 |
| Thyroid | 1.45E-01 | 1.45E-01 | 1.45E-01 | 2.33E-01 |
| Urinary bladder wall | 7.57E-01 | 4.92E-01 | 3.20E-01 | 2.70E-01 |
| Uterus | 2.14E-01 | 1.95E-01 | 1.82E-01 | 2.99E-01 |
| Total body | 1.45E-01 | 1.43E-01 | 1.42E-01 | 2.77E-01 |
| Effective dose (mSv/MBq) | 1.95E-01 | 1.77E-01 | 1.59E-01 | 2.88E-01 |

Fig. 1. Normal biodistribution of \(^{124}\text{I}\)FIAU. Maximal-intensity-projection (MIP) PET image (a) and fused coronal PET/CT image (b) at 4 h after injection in a healthy volunteer. Prominent activity is seen in the kidneys, liver and urinary bladder.
The biodistribution of 124I-FIAU is generally similar to that of radiolabeled leukocytes and 18F-FDG, two other radiopharmaceuticals available for clinical diagnosis of PJI (albeit with mixed results), except for additional bone marrow uptake seen with radiolabeled leukocytes [24], and additional high brain uptake and variable myocardial and bowel uptake with 18F-FDG [25]. The ED of 124I-FIAU is higher for a single scan ($74–185$ MBq at 0.16 to 0.20 mSv/MBq), compared to that with 18F-FDG ($370–740$ MBq at 0.019 mSv/MBq) and radiolabeled leukocytes (111In-leukocytes: $10–18.5$ MBq at 0.59 mSv/MBq; 99mTc-HMPAO leukocytes: $185–370$ MBq at 0.017 mSv/MBq).

124I-FIAU PET/CT was evaluated for its potential utility in diagnosing PJs. Data from a rodent model showed that bacteria-infected muscle had a much greater imaging signal than noninfected muscle [15]. In addition, a muscle infection with a tk-deleted $E. coli$ mutant resulted in no imaging signal. These observations suggested that FIAU was effectively phosphorylated by bacterial TKs and that bacterial FIAU uptake could be readily detected by radionuclide imaging. In a small human study, Diaz et al. performed 124I-FIAU PET/CT in 8 subjects with suspected musculoskeletal infections [16]. Three out of the 8 patients had suspected hip or knee PJI; 124I-FIAU PET/CT was true-positive for

Fig. 2. True-positive scan; left knee prothetic joint infection. The transverse, sagittal and coronal 124I-FIAU PET images (a–c), and fused PET/CT images (d–f) at 27 h after injection in a patient with bilateral knee replacements show pronounced metal artifacts (arrow head, a) and muscle uptake (arrow head, b). The arrow in (c) points to the increased focal uptake in the left knee compared to the right knee.

Fig. 3. False-positive scan. The transverse, sagittal and coronal 124I-FIAU PET images (a–c), and fused PET/CT images (d–f) at 24 h after injection in a subject with suspected right knee PJI show pronounced metal artifacts (arrow head, a) and muscle uptake (arrow head, b). The arrow in (c) points to increased focal uptake in the right knee compared to the left knee.
infection in two, who either had positive joint aspirate culture or multiple areas of infection noted during surgery, suggesting a high bacterial load. \([^{124}\text{I}]\text{FIAU PET/CT} \) was true negative in the third patient.

In our clinical trials, we enrolled subjects who did not have overt signs or symptoms of infection. These patients required operative intervention to correct pain in the prosthetic joint, irrespective of preoperative test results. Because of the lack of a well-validated truth standard for diagnosing PJI, such patients pose a marked diagnostic challenge. Clinicians are often forced to explore the prosthetic joint despite no clear preoperative diagnosis and to modify their surgery based on intraoperative findings. Many patients will have chronic and/or indolent infections with low bacterial load or subtle infections located in biofilms [26]. If the bacteria are in a quiescent state, there will be little uptake of a metabolic agent like FIAU. Further adding to the diagnostic challenges is the difficulty in detecting fastidious organisms with standard microbiological assays [7,27].

To diagnose PJI confidently in these difficult cases, an effective imaging technology must be able to detect bacterial infections with high sensitivity and specificity. Whereas, \(^{18}\text{F}-\text{FDG PET/CT} \) imaging has been used in assessing periprosthetic infections, it cannot discriminate aseptic from septic inflammation. In our phase 1 and phase 2 PJI studies, inflammation was noted for a number of subjects in the operative reports or on histologic examination of tissue samples obtained at surgery. This observation raised the question whether the FIAU signal detected around the prostheses of interest at least partially came from the uptake by inflammatory cells. We performed \([^{124}\text{I}]\text{FIAU PET/CT} \) imaging in a murine collagen-induced arthritis (CIA) model to assess whether FIAU was incorporated by host inflammatory cells (supplemental information).

The mouse imaging data suggest that the FIAU uptake initially increased at the inflamed sites, likely due to increased blood volume that is commonly associated with inflammation, and the uptake decreased as the agent cleared from the circulation. However, even with the 42-day half-life of \(^{124}\text{I} \), no increased \([^{124}\text{I}]\text{FIAU} \) signal was observed in the inflamed areas of diseased animals compared to naive animals at 24 and 48 h post-injection (Figure S1). Therefore, there was no evidence that FIAU was specifically taken up by the inflammatory cells at the joint of interest.

Nevertheless, our experience with \([^{124}\text{I}]\text{FIAU PET/CT} \) imaging argues against its potential as a robust imaging tool for PJI diagnosis. The specificity for bacterial infection was suboptimal. Metal artifacts in CT images resulted in pronounced PET signal localized to the prosthetic joint attributable to attenuation correction artifact, making the unequivocal detection of bacteria-specific uptake very challenging, particularly in cases where only a unilateral prostheses was present. The observed high diffuse muscle uptake of FIAU was bilateral, not limited to specific muscle groups, and involved muscles not just near the joint. There were no clearly discernable differences in muscle uptake between subjects with infected PJI and those without. The muscle uptake of \([^{124}\text{I}]\text{FIAU} \) has also been reported by Diaz et al. in their small human study [16]. Similar findings were described in \([^{18}\text{F}]\text{FIAU} \) studies of experimental dogs [28]. Not surprisingly, myopathy was an adverse effect associated with chronic FIAU treatment of human hepatitis B infection [23]. We hypothesize that the muscle uptake may be the result of human rather than bacterial TK activity, since FIAU is a known substrate for human TK’s (cytoplasmic TK1 and mitochondrial TK2). FIAU was reported to be as good a substrate as thymidine for human TK2 [29], although the catalytic efficiency of human TK1 for FIAU was ~60 fold lower [30]. TK2 also shares more sequence similarity to bacterial TKs than TK1 does. In addition, TK1 is only expressed in S-phase cells, while TK2 is constitutively expressed in all tissues. Indeed, while TK1 is not expressed in muscle, a resting cell type, it is one of the tissues where TK2 mRNAs are predominantly expressed [31]. It is tempting to speculate that this FIAU muscle uptake reflects mitochondrial TK2 activity. Unfortunately the muscle signal markedly compromised our ability to detect bacteria-specific uptake, especially in the patients in the current study where the bacterial burden was assumed to be low. One of the major hurdles with detection of small numbers of bacteria by PET is the limited spatial resolution, which makes it extremely difficult to visualize low uptake of a targeted PET agent compared to the high surrounding background. It is also worth noting that an \(^{124}\text{I} \)-labeled tracer, with only 25.6% decay by positron emission, generally displays inferior imaging characteristics than an \(^{18}\text{F} \)-labeled tracer, with 97% positron decay and that is typically given in much higher quantity. This has likely contributed to the low sensitivity of \([^{124}\text{I}]\text{FIAU} \) for bacteria imaging.

The reasons for using \(^{124}\text{I} \)-labeled instead of \(^{18}\text{F} \)-labeled FIAU in our studies were multiple. First, chronic PJIs typically involve slow-growing bacteria. We and the study performed under RDRC approval at Johns Hopkins University (Martin Pomper and Steve Cho, personal communications) have found that delayed imaging until 24 h post FIAU dosing was required to increase specific bacterial uptake and optimize the signal-to-noise ratio in cases of infection with a low bacteria load. With an \(^{18}\text{F} \)-half-life of 109.8 min, delayed imaging at 24 h is not possible with \([^{18}\text{F}]\text{FIAU} \). Second, the long half-life of \(^{124}\text{I} \) allows for once a week production in a central facility and wide distribution throughout the country to promote clinical application. Last, the synthesis of \([^{18}\text{F}]\text{FIAU} \) is more complex and achieves much lower yield than that of \([^{124}\text{I}]\text{FIAU} \). We considered using \([^{18}\text{F}]\text{FIAU} \) early on for our study, but the manufacturer could not obtain high enough yield to make this approach scalable to a level that would have been sufficient for our multi-site trials, let alone future commercial use. PET images likely would have had better resolution with \([^{18}\text{F}]\text{FIAU} \), but the CT streak artifacts and possibly muscle uptake would have remained problematic. Overall, compromises had to be made on the choice of tracer based on radionuclide properties, taking into account the target patient population, the long term goal of commercialization and real life logistical constraints. We could have increased the quality of the PET images by requiring scanners with metal-artifact reduction reconstruction algorithms, or scanners that can perform dual-energy CT for artifact reduction. However, since nearly all PET-CT scanners in US at the time did not have these desirable features, this would have been a limitation to wide patient access.

It is important to point out that \([^{124}\text{I}]\text{FIAU} \) could be a potential tracer for infections caused by certain non-bacterial organisms, including Herpes-simplex virus, and other viruses with homology to HSV-1 thymidine kinase protein (HSV-1 tk), such as Epstein–Barr virus (EBV). In a clinical setting that is not confounded by metal artifacts or extremely low infection burden, FIAU may still have utility for imaging infection [32].

5. Conclusion

\([^{124}\text{I}]\text{FIAU} \) was well-tolerated in healthy volunteers and subjects with suspected PJI, and had acceptable dosimetry. However, the utility of \([^{124}\text{I}]\text{FIAU} \) in the detection of PJI in the clinic is limited by low image quality as a result of metal artifact and high background from non-specific muscle uptake.

Conflict of interest

Dr. McLerath is a full time employee of Covance, a Contract Research Organization (CRO). Dr. Mont reports personal fees from DJ Orthopedics, Medical Compression Systems, Sage Products, Tissue Gene, personal fees and other from Stryker Orthopedics, outside the submitted work. Dr. Mont is an editor for the Journal of Bone and Joint Surgery, the Journal of Arthroplasty, the American Journal of Orthopedics, the Journal of Knee Surgery, Surgical Techniques International, and an editor for Orthopedics. Dr. Stabin received personal fee from Covance. Dr. Siegel received support from BioMed Valley Discoveries for the clinical trial, personal fees from GE Healthcare, Siemens Molecular Imaging, outside the submitted work. Dr. Barnett received fees from Covance for the clinical trial. Dr. Gelb was a full time employee of Covance during the conduct of study. Dr. Bettegowda has an issued
patent US111629,607. Dr. Saha has a patent methods and compositions for detecting infections pending.

Acknowledgments

We are grateful to the IAB members, Dr. Dean Tsukayama, Dr. George McKinley, Dr. Stefan Jibodh, and the central pathologist, Dr. Thomas Bauer, for their support of the phase 2 study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.nucmedbio.2016.01.004.

References

[10] References