A protein scaffold coordinates SRC-mediated JNK activation in response to metabolic stress

Shashi Kant
University of Massachusetts Medical School

Claire L. Standen
University of Massachusetts Medical School

Caroline Morel
University of Massachusetts Medical School

Dae Young Jung
University of Massachusetts Medical School

Jason K. Kim
University of Massachusetts Medical School

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/6244

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress

Graphical Abstract

Highlights
- JIP1 is required for saturated-fatty-acid-stimulated JNK activation
- JIP1 is a SRC substrate and recruits the SRC tyrosine kinase to lipid rafts
- Tyrosine-phosphorylated JIP1 binds the SH2 domain of the RAC exchange factor VAV
- SRC-phosphorylated VAV bound to JIP1 activates JNK by the RAC/MLK pathway

Authors
Shashi Kant, Claire L. Standen, Caroline Morel, ..., Wojciech Swat, Richard A. Flavell, Roger J. Davis

Correspondence
shashi.kant@umassmed.edu (S.K.), roger.davis@umassmed.edu (R.J.D.)

In Brief
Kant et al. demonstrate that scaffold protein JIP1 is required for palmitate-stimulated redistribution of SRC to lipid rafts. Phosphorylation of JIP1 on tyrosine mediates SH2 domain interactions with both SRC and the RAC exchange factor VAV. This signaling complex causes RAC-dependent activation of the MLK pathway that activates JNK.
A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress

Shashi Kant,1,2,7,* Claire L. Standen,1,7 Caroline Morel,1,7 Dae Young Jung,1 Jason K. Kim,1,3 Wojciech Swat,4 Richard A. Flavell,5 and Roger J. Davis1,6,8,*

1Program in Molecular Medicine
2Division of Cardiovascular Medicine, Department of Medicine
3Division of Endocrinology, Metabolism and Diabetes, Department of Medicine
University of Massachusetts Medical School, Worcester, MA 01605, USA
4Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
5Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
6Howard Hughes Medical Institute, Worcester, MA 01605, USA
7These authors contributed equally
8Lead Contact
*Correspondence: shashi.kant@umassmed.edu (S.K.), roger.davis@umassmed.edu (R.J.D.)
http://dx.doi.org/10.1016/j.celrep.2017.08.025

SUMMARY

Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH2-terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway.

INTRODUCTION

Human obesity is a worldwide health problem that is associated with metabolic syndrome and the development of insulin resistance and type 2 diabetes (Flegal et al., 2013). Effects of obesity on metabolic syndrome are mediated, in part, by increased amounts of saturated free fatty acid (FFA) in the blood (Kahn et al., 2006). A key signaling mechanism that is activated by FFA is the cJun NH2-terminal kinase (JNK) stress response pathway (Davis, 1994, 2000). Studies using JNK-deficient mice demonstrate that JNK signaling is required for the development of obesity and insulin resistance (Sabio and Davis, 2010). Consequently, components of the JNK signaling pathway represent potential targets for the design of drugs that may be useful for the treatment of metabolic syndrome (Sabio and Davis, 2010).

The mechanism of JNK activation caused by FFA is unclear. Recent studies have identified the non-receptor tyrosine kinase SRC (Holzer et al., 2011), the small GTPase RAC1 (Sharma et al., 2012), and the mixed-lineage protein kinase (MLK) family of MAP kinase kinase kinase (MAP3K) (Craigie et al., 2016; Jaeschke and Davis, 2007; Kant et al., 2013; Sharma et al., 2012) as components of an FFA-stimulated signaling pathway that activates JNK. However, the mechanism that mediates signaling has not been established. Here, we report that the scaffold protein JIP1 can serve to link SRC, RAC1, and MLK in an FFA-stimulated signaling pathway.

RESULTS

JIP1 Is Required for FFA-Stimulated SRC Activation and Redistribution to Lipid Rafts

The scaffold protein JIP1 binds SRC family members (Kennedy et al., 2007; Nihalani et al., 2007) and is implicated in the MLK pathway that leads to JNK activation (Jaeschke et al., 2004; Morel et al., 2010; Whitmarsh et al., 1998, 2001). It is established that FFA causes SRC redistribution to Triton-insoluble lipid rafts (Holzer et al., 2011). To test whether JIP1 might contribute to SRC function, we examined whether FFA treatment caused a similar redistribution of JIP1. This analysis demonstrated increased amounts of JIP1, SRC, and activated pY416-SRC in the Triton-insoluble fraction of cells exposed to FFA (Figure 1A). Moreover, immunofluorescence analysis of Triton-permeabilized cells demonstrated co-localization of JIP1, SRC, and MLK in an FFA-stimulated signaling pathway.
PY416-SRC to lipid rafts (Figures 1C and 1D). In contrast, Mapk8ip1−/− MEFs were resistant to FFA-stimulated JNK activation and SRC redistribution to Triton-insoluble lipid rafts. Together, these data demonstrate that JIP1 is required for the regulation of both SRC and JNK by FFA.

The requirement of JIP1 for FFA-stimulated JNK activation (Figure 1C) may represent a general role of JIP1 in JNK signaling. We, therefore, compared JNK activation in WT and Mapk8ip1−/− MEFs in response to the inflammatory cytokine tumor necrosis factor α (TNF-α). This analysis demonstrated that TNF-α causes similar JNK activation in control and JIP1-deficient cells (Figure S1). JIP1, therefore, plays a selective role in JNK activation, including FFA signaling.

The JIP1 JNK-Binding Domain Is Required for HFD-Induced Insulin Resistance
To test whether JIP1-mediated JNK activation is relevant to the metabolic stress response in vivo, we established mice lacking...
the JNK-binding domain of JIP1 (Mapk8ip^{DJBD}/^{DJBD} mice, designated as JIP1^{DJBD} mice). The core of the JNK-binding domain (Leu¹⁶⁰-Asn¹⁶¹-Leu¹⁶²) binds a hydrophobic pocket on JNK (Heo et al., 2004; Whitmarsh et al., 1998) and is required for JIP1-mediated JNK activation (Whitmarsh et al., 1998). This core motif was replaced with Gly¹⁶⁰-Arg¹⁶¹-Gly¹⁶² in JIP1^{DJBD} mice (Figure S2). Control studies demonstrated that MEF derived from JIP1^{DJBD} mice were resistant to FFA-stimulated JNK activation (Figure 2A). Comparison of WT and JIP1^{DJBD} mice fed a chow diet (ND) or a high-fat diet (HFD) demonstrated that the HFD-induced insulin intolerance detected in WT mice was suppressed in JIP1^{DJBD} mice (Figure 2B). The improved insulin tolerance of HFD-fed JIP1^{DJBD} mice was associated with markedly decreased HFD-induced hyperinsulinemia, compared with WT mice (Figure 2C).

Hyperinsulinemic-euglycemic clamp analysis of glucose infusion rates confirmed that HFD-fed JIP1^{DJBD} mice were more insulin sensitive than HFD-fed WT mice (Figure 2D). Moreover, the HFD-fed JIP1^{DJBD} mice exhibited decreased hepatic glucose production (Figure 2E), increased hepatic insulin action (Figure 2F), and increased whole-body glucose turnover (Figure 2G), compared with HFD-fed WT mice. These phenotypes were associated with increased energy expenditure and decreased obesity (Figure S3), reduced adipose tissue hypertrophy (Figures S4A and S4B), and reduced hepatic steatosis (Figure S4C). This protection of HFD-fed JIP1^{DJBD} mice against obesity and insulin resistance is similar to that detected in JNK-deficient mice (Sabio and Davis, 2010). Together, these data establish that JIP1-mediated JNK activation contributes to the HFD-induced metabolic stress response in vivo.

VAV, RAC1, MLK, and MKK7 Contribute to JIP1-Mediated JNK Activation

To examine the mechanism of JIP1-mediated JNK activation caused by exposure of cells to saturated FFA, we tested the role of JNK pathway components that interact with JIP1, including the MAP2K isoform MKK7 and the MLK family of MAP3K (Whitmarsh et al., 1998). Analysis of WT and Map2k7^{−/−} MEFs demonstrated that MKK7 is required for FFA-stimulated JNK activation (Figure 3A). To test the role of the MLK group of MAP3K, we examined the effect of dual deficiency of MLK2 plus MLK3, the major MLK family members expressed by MEFs (Kant et al., 2011). Comparison of WT and Map3k10^{−/−}/Map3k11^{−/−} MEFs demonstrated that MLK7 is required for FFA-stimulated JNK activation (Figure 3A). To test the role of the MLK group of MAP3K, we examined the effect of dual deficiency of MLK2 plus MLK3, the major MLK family members expressed by MEFs (Kant et al., 2011). Comparison of WT and Map3k10^{−/−}/Map3k11^{−/−} MEFs demonstrated that MLK protein kinases were not required for FFA-stimulated SRC and activated SRC redistribution to lipid rafts (Figure 3C). This analysis identifies SRC as an upstream component of the JIP1-mediated MLK-MKK7-JNK signaling pathway that is activated by FFA.

MLK isoforms can be activated by the RHO family GTPase RAC1 by binding to a conserved MLK CRIB domain (Teramoto
Figure 3. VAV, RAC1, MLK, and MKK7 Contribute to JIP1-Mediated JNK Activation

(A and B) WT and Map2k7−/− MEFs (A) or Map3k10−/− Map3k11−/− MEFs (B) were treated (for 16 hr) without (BSA) or with palmitate/BSA (FFA) and subsequently examined by immunoblot analysis.

(C) The lipid raft fraction of WT and Map3k10−/− Map3k11−/− MEFs treated for 4 hr without (BSA) or with palmitate/BSA (FFA) was examined by immunoblot analysis.

(D) WT and Map3k10−/− Map3k11−/− MEFs were treated with BSA or FFA (for 16 hr) and examined by immunoblot analysis.

(F and G) WT and Map2k7−/− MEFs were treated with BSA or FFA. JIP1 immunoprecipitates (F) and isolated lipid rafts (G) were examined by immunoblot analysis.

(H) WT and Vav1−/− Vav2−/− Vav3−/− (Vav−/−) cells were treated with BSA or FFA/BSA (for 16 hr) and examined by immunoblot analysis.

(I–K) SFY fibroblasts and SFY cells complemented with SRC (SFY + SRC) fibroblasts were transduced with a retrovirus expressing EE-tagged JIP1. The cells were treated with BSA or FFA/BSA and examined by immunoblot analysis of cell lysates and isolated lipid rafts.

(L) Constitutively activated SRC (SRCY529F) and SRC expression plasmids were used in transfection assays with WT and Map3k10−/− Map3k11−/− MEFs. Cell lysates were prepared at 24 hr post-transfection and examined by immunoblot analysis.
et al., 1996). To test whether this CRIB-mediated mechanism contributes to FFA-stimulated JNK activation, we examined the effect of an inactivating mutation in the MLK3 CRIB domain (Ile192 Ser193 replaced with Ala192 Ala193) in the context of deficiency of the redundant isoform MLK2 (Kant et al., 2011). Comparison of WT and Map3k10/+/Map3k11ΔCRIB/ΔCRIB MEFs demonstrated that the MLK CRIB domain is essential for FFA-stimulated JNK activation (Figure 3D). This mechanism is consistent with the observation that RAC1 activation is required for the regulation of JNK activity by FFA (Sharma et al., 2012).

The exchange factor VAV has been implicated in JNK activation (Crespo et al., 1996; Kant et al., 2011). To test whether VAV contributes to FFA-stimulated JNK activation, we compared JNK activity in WT and VAV-deficient (Vav1−/− Vav2−/− Vav3−/−) cells. This analysis demonstrated that VAV is required for FFA-stimulated JNK activation (Figure 3E). Moreover, VAV treatment caused an interaction between VAV and JIP1 that was detected by co-immunoprecipitation analysis (Figure 3F). VAV treatment also caused JIP1-dependent redistribution of VAV to lipid rafts (Figure 3G), although VAV was not required for the lipid raft association of JIP1 (Figure 3H).

FFA Causes SRC-Mediated Tyrosine Phosphorylation of JIP1 and VAV

The interaction between VAV and JIP1 was associated with FFA-stimulated tyrosine phosphorylation of both proteins (Figure 3F). The role of JIP1 tyrosine phosphorylation is unclear, but it is established that tyrosine phosphorylation of VAV increases GTP/GDP exchange activity on RAC1 (Crespo et al., 1997). To examine the mechanism of FFA-stimulated tyrosine phosphorylation of JIP1 and VAV, we tested the potential role of SRC family tyrosine kinases. These studies were performed using Src−/− Fyn−/− (SFY) cells. Treatment of SFY cells with FFA did not cause JNK activation (Figure 3I) or tyrosine phosphorylation of JIP1 and VAV (Figure 3J). In contrast, co-immunoprecipitation analysis demonstrated that the expression of SRC restored both JNK activation and tyrosine phosphorylation of both JIP1 and VAV in FFA-treated cells (Figures 3I and 3J). SRC was required for JIP1 redistribution to lipid rafts (Figure 3K). SRC family protein kinases, therefore, function as components of the JNK signaling pathway activated by treatment of cells with FFA.

To test whether SRC-mediated activation of JNK is mediated by the MLK pathway, we expressed constitutively activated SRC (SRCT257LTP) in WT and Map3k10−/− Map3k11−/− MEFs. Activated SRC caused JNK activation selectively in the WT MEFs (Figure 3L). These data demonstrate that the MLK pathway is an essential mediator of SRC-induced JNK activation.

Previous studies of JIP1 tyrosine phosphorylation have implicated roles for both ABL (Dajas-Bailador et al., 2008) and SRC (Kennedy et al., 2007; Nihalani et al., 2007). To confirm the role of SRC in FFA-stimulated tyrosine phosphorylation of JIP1, we examined the effect of drugs that selectively inhibit ABL and SRC. This analysis demonstrated that the SRC-selective inhibitor AZD0530, but not the ABL-selective inhibitor Gleevec, prevented FFA-stimulated tyrosine phosphorylation of JIP1 (Figure 3A). These data confirm that SRC family tyrosine kinases contribute to FFA-stimulated tyrosine phosphorylation of JIP1 (Figure 3A).

Tyrosine Phosphorylation of JIP1 Is Required for FFA-Stimulated JNK Activation

JIP1 is extensively phosphorylated (D’Ambrosio et al., 2006), including on sites of tyrosine (Y278, Y409, and Y427) phosphorylation (Dajas-Bailador et al., 2008; Kennedy et al., 2007; Nihalani et al., 2007). This phosphorylation may create sites of interaction for signaling proteins with SH2 domains. Indeed, phosphotyrosine-dependent binding of JIP1 to the SH2 domain of SRC family proteins has been identified (Kennedy et al., 2007; Nihalani et al., 2007). A similar interaction might account for the binding of JIP1 to VAV. To test SH2 domain binding to JIP1, we examined the interaction of JIP1 with the SH2 domains of SRC and VAV2. This analysis demonstrated that JIP1 from FFA-treated cells bound to SRC-SH2 and VAV2-SH2 (Figures 4B and 4C). In contrast, JIP1 from control cells did not bind VAV2-SH2, but a low level of interaction with SRC-SH2 was detected (Figures 4B and 4C).

To examine the role of JIP1 tyrosine phosphorylation in JNK activation caused by saturated FFA, we performed complementation analysis using Mapk8ip1+/− MEFs expressing WT or mutated JIP1 proteins. Two sites of tyrosine phosphorylation on JIP1 (pY409DNC and pY427EEA) are similar to the optimal sequence (pYEEI) for phosphotyrosine binding by the SRC-SH2 domain (Songyang et al., 1993). Mutational analysis indicated that Y409 and Y427 serve partially redundant functions. We, therefore, examined the function of JIP1 with dual mutation at Y409 plus Y427. This analysis demonstrated that tyrosine phosphorylation of JIP1 was increased when cells were treated with FFA (Figure 4D). In contrast, phosphotyrosine was not detected on the mutated JIP1Y409/427F protein (Figure 4D). Co-immunoprecipitation analysis demonstrated that the interaction of SRC with JIP1 in control and FFA-treated cells was suppressed in studies with the mutated JIP1Y409/427F protein (Figure 4D). Furthermore, the FFA-stimulated redistribution of JIP1 and SRC to lipid rafts depends on these sites of JIP1 tyrosine phosphorylation (Figure 4E). These data indicate that Y409 and Y427 are required for FFA-stimulated JIP1 tyrosine phosphorylation and SRC binding.

One site of tyrosine phosphorylation on JIP1 (pY278LTP) is similar to the optimal sequence (pYMEP) for phosphotyrosine binding by the VAV SH2 domain (Songyang et al., 1994). Comparison of Mapk8ip1+/− MEFs expressing WT and JIP1Y278F proteins demonstrated that treatment with FFA promoted the co-immunoprecipitation of VAV with JIP1 and that this interaction was dependent on Y278 (Figure 4F). The phosphorylation site Y278 is, therefore, required for the FFA-induced interaction of JIP1 and VAV.

To test the requirement of JIP1 tyrosine phosphorylation for FFA-stimulated JNK activation, we compared Mapk8ip1+/− MEFs expressing WT JIP1 and mutated JIP proteins (JIP1Y278F or JIP1Y409/427F). This analysis demonstrated that expression of WT JIP1 in Mapk8ip1+/− MEFs restored FFA-stimulated JNK activation (Figure 4G). In contrast, FFA-stimulated JNK activation was not detected in Mapk8ip1+/− MEFs expressing JIP1Y278F or JIP1Y409/427F (Figure 4G). Together, these data indicate that the tyrosine-phosphorylation-dependent interaction of JIP1 with SRC and VAV is required for FFA-stimulated JNK activation (Figure 4H).
DISCUSSION

An understanding of the physiological mechanism of FFA-stimulated JNK activation has remained elusive, because several potential pathways have been implicated. Indeed, it is likely that FFA-stimulated JNK activation may occur by more than one mechanism in vivo, possibly in a cell-type- and context-specific manner. These potential mechanisms include: (1) the FFA-induced endoplasmic reticulum unfolded protein response (Fu et al., 2012); (2) FFA ligand binding to G-protein-coupled receptors (Alvarez-Curto and Milligan, 2016; Moran et al., 2016); (3) FFA metabolism and accumulation of signaling lipids, including diacylglycerol, ceramide, and sphingosine-1-phosphate (Hu et al., 2009; Montell et al., 2001; Schmitz-Peiffer et al., 1999); (4) FFA-stimulated NBR1-MEKK3 signaling (Hernandez et al., 2014); and (5) FFA-stimulated lipid raft signaling (Holzer et al., 2011). It is also possible that FFA causes JNK activation as part of a generalized lipotoxic stress response (Neuschwander-Tetri, 2010).

Here, we examined the lipid raft signaling mechanism of FFA-stimulated JNK activation (Holzer et al., 2011). Previous studies
have demonstrated roles for SRC (Holzer et al., 2011), RAC1 (Sharma et al., 2012), and the MLK group of MAP3K (Jaeschke and Davis, 2007; Kant et al., 2013). While VCA can load GTP on RAC1 and activate MLK (Teramoto et al., 1996), the role of SRC in this signaling pathway has not been established (Holzer et al., 2011).

Our analysis demonstrates that the scaffold protein JIP1 plays a dual role in FFA signaling by co-ordinating upstream SRC functions together with downstream effector signaling by the JNK pathway (Figure 4H). SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced tyrosine phosphorylation and activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module (Figure 4H). It is likely that this mechanism contributes to physiological regulation, because defects in JIP1 (Jaeschke et al., 2004; Morel et al., 2010), including disruption of the JIP1 JNK-binding site (Figure 2), strongly suppress the consequences of HFD consumption by mice.

The interaction of JIP1 with signaling molecules provides an opportunity for the design of small molecules to disrupt FFA-stimulated JNK activation. This approach has been used to identify drugs that target the JNK/JIP1 interaction (Chen et al., 2009; Stebbins et al., 2008) but could be extended to the new interactions identified by our study. Since JNK has many physiological functions, drugs that target the JIP1 scaffold protein may provide greater selectivity for suppression of JNK activation caused by metabolic stress. Such drugs may be useful for the treatment of obesity-induced metabolic stress, including metabolic syndrome and type 2 diabetes (Kaneto et al., 2004).

EXPERIMENTAL PROCEDURES

Mice

C57BL/6J mice (stock number 000664) and Rosa-CreERTm mice (stock number 00487) (Bades et al., 2003) were obtained from The Jackson Laboratory. We have previously described Mapk8ip1−/− mice (Whitmarsh et al., 2001), Mapk8ip1CreERTmloxP/loxPmice (Hubner et al., 2012), Mapk8ip1ΔJBD−/− mice (Kant et al., 2011), Mapk8ip1ΔJBD−/− mice (Branco et al., 2005), Mapk8ip1ΔCRIB−/−loxP/loxPmice (Kant et al., 2011), and Vav1−/− Vav2−/− Vav3−/− mice (Fujikawa et al., 2003) on a C57BL/6J strain background.

Mice with a defect in the JNK-binding domain of JIP1 (replacement of Leu160-Asn161-Leu162 with Gly160-Arg161-Gly162) were established using homologous recombination in embryonic stem cells (ESCs) using standard methods (Figure S2A). The mutated allele was designated Mapk8ip1ΔJBD. Briefly, a targeting vector was constructed (Figure S2A). This targeting vector was designed to introduce point mutations in exon 3 of the Mapk8ip1 gene that create the ΔJBD mutation and also the introduction of an Eag restriction site (Figures S2A and S2B). The targeting vector was also designed to introduce a floxed Neo® cassette in intron 3 (Figure S2A). T1 ESCs (strain 129svev) were electroporated with this vector and selected with 200 µg/mL G418 (Invitrogen) and 2 µM gancyclovir (Syntex). ESC clones with the floxed Neo® cassette correctly inserted in intron 3 were identified by Southern blot analysis (Figure S2C). These ESCs included clones without (genotype +/Neo®-Mapk8ip1ΔJBD) and with (genotype +/Neo®-Mapk8ip1ΔJBD) the ΔJBD mutation in exon 3 (Figure S2D). These ESCs were injected into C57BL/6J blastocysts to create chimeric mice that were bred to obtain germine transmission of the targeted Mapk8ip1 allele. The floxed Neo® cassette was excised using Cre recombinase. The mice used in this study were backcrossed (ten generations) to the C57BL/6J strain (The Jackson Laboratory).

Male mice (8–10 weeks old) were fed a chow diet (Iso Pro 3000, Purina) or an HFD (F3282, Bioserve). Mice were housed in a facility accredited by the American Association for Laboratory Animal Care. The Institutional Animal Care and Use Committee of the University of Massachusetts Medical School approved all studies using animals.

Genotype Analysis

PCR analysis of genomic DNA was used to detect Mapk8ip1−/− (Whitmarsh et al., 2001); Mapk8ip1+−/− (Kant et al., 2011); Mapk8ip1+−/− (Branco et al., 2005); Mapk8ip1ΔJBD+−/− (Kant et al., 2011); and Vav1−/−, Vav2−/−, and Vav3−/− (Fujikawa et al., 2003) alleles. The Mapk8ip1ΔJBD allele was detected using three different assays. First, Southern blot analysis of HindIII-restricted genomic DNA was performed by probing with a 500-bp fragment of the Mapk8ip1 gene that was isolated by PCR using the primers 5′-CATCATCTGTTGCTGCT GACCGGCC-3′ and 5′-GCTTGCCGTTGGAGAGCTGACG-3′. The Mapk8ip1+−/− and Mapk8ip1ΔJBD+−/− alleles were detected as 11.9-kb and 6.6-kb genomic fragments, respectively (Figure S2C). Second, a PCR assay was used using the primers 5′-GCAAGCTTGGAGAGCTGACG-3′ and 1.175-kb plus 0.925-kb DNA fragments (Mapk8ip1ΔJBD+−/−) (Figure S2D). Third, backcrossed mice were genotyped by PCR using the primers 5′-CCAAAGTGGTGAGAGCTGACG-3′ and 5′-CGAGATGTGGGAGAGCTGACG-3′ to yield a 400-bp DNA fragment (Mapk8ip1+−/−) or a 450-bp DNA fragment (Mapk8ip1ΔJBD+−/−) (Figure S2E).

Plasmids

The retroviral vector pBABE-puro (Morgenstern and Land, 1990) was obtained from Addgene (plasmid #1764). The Mapk8ip1b cDNA was modified by insertion of a sequence encoding the T7 epitope tag between codons 1 and 2 (Whitmarsh et al., 1998) and was cloned as a blunt-end fragment into the EcoRI site of pbABE-puro. Point mutations in the Mapk8ip1 b cDNA were made using primers 5′-GAGACGGTGACAGATGACTTTATG-3′ and 5′-GCGACTGACTCCTGACAGATGACTTTATG-3′. Plasmids were purchased from Open BioSystems (#OHS4902_SH2).

Cell Culture

SFY fibroblasts, complemented without and with SRC (Klinghoffer et al., 1999), were obtained from the American Type Culture Collection (CRL2459 and CRL2498). RIN5F cells expressing Glu-Glu-tagged JIP1b have been described (Stebbins et al., 2008) but could be extended to the new interactions identified by our study. Since JNK has many physiological functions, drugs that target the JIP1 scaffold protein may provide greater selectivity for suppression of JNK activation caused by metabolic stress. Such drugs may be useful for the treatment of obesity-induced metabolic stress, including metabolic syndrome and type 2 diabetes (Kaneto et al., 2004).
prior to flotation of the cell lysate on the step gradient and centrifugation (16 hr at 260,000 x g). Raft and non-raft fractions were collected and examined by protein immunoblot analysis.

Immunoblot Analysis

Cell extracts were prepared using Triton lysis buffer (20 mM Tris [pH 7.4], 1% Triton X-100, 10% glycerol, 137 mM NaCl, 2 mM EDTA, 25 mM β-glycerophosphate, 1 mM sodium orthovanadate, 1 mM PMSF, 10 μg/mL aprotinin and leupeptin) for 20 min at ice. Triton-soluble and -insoluble fractions were prepared by centrifugation at 13,000 rpm (10 min) and examined by protein immunoblot analysis. Primary antibodies were obtained from Cell Signaling Technology (MLK3, pJNK, SRC, and pY416-SRC), Covance (Glu-Glu tag), Life Technologies (JNK, Flotillin1, and JIP1), Millipore (T7 tag), Santa Cruz Biotechnology (VAV2 and Flotillin2), and Sigma (α-Tubulin). Immune complexes were detected by enhanced chemiluminescence (New England Nuclear) using an ImageQuant LAS 4000 (General Electric).

Immunoprecipitation

Cell extracts were prepared using NP-40 lysis buffer (150 mM NaCl, 50 mM Tris [pH 8.0], 5 mM EDTA, 1% NP-40, 1 mM sodium orthovanadate, 1 mM PMSF, 10 mg/mL aprotinin and leupeptin) and incubated (5 hr at 4°C) with 10 μg control nonimmune rabbit immunoglobulin G (IgG) (Santa Cruz Biotechnology) or 10 μg rabbit antibodies to the Glu-Glu tag (Covance) or JIP1 (Yasuda et al., 1999). Immune complexes isolated using protein G sepharose (Sigma) were washed (five times) with lysis buffer.

In Vitro SH2 Domain Interaction Assays

Bacterial expression of His6-SRC-SH2 and His6-VAV-SH2 was induced with 1 mM isopropyl β-D-1-thiogalactoside (IPTG) (3 hr, 37°C). The bacteria were lysed by sonication in Buffer X (20 mM Tris [pH 7.4], 1 M NaCl, 0.2 mM EDTA, 0.2 mM EGTA, 1 mM DTT, 1 mM PMSF, 10 μg/mL aprotinin and leupeptin). The soluble extract was clarified by centrifugation. The supernatant was incubated (1 hr at 4°C) with 20 μL nickel magnetic beads (GE Healthcare Life Sciences, #28-9781-19 AB). The beads were washed with Buffer X and then incubated with extracts (100 μg protein) prepared from WT and Mapk8IP1−/− MEFs using Triton lysis buffer (20 mM Tris [pH 7.4], 1% Triton X-100, 10% glycerol, 137 mM NaCl, 2 mM EDTA, 25 μM β-glycerophosphate, 1 mM sodium orthovanadate, 1 mM PMSF, 10 μg/mL aprotinin and leupeptin). The beads were washed with Triton lysis buffer, and bound proteins were examined by immunoblot analysis.

Immunofluorescence

Cells grown on glass coverslips were treated (1 min) at room temperature (RT) with 0.5% Triton X-100 in PBS and then fixed by incubation at 4°C in 4% paraformaldehyde (30 min). The coverslips were incubated (1 hr with blocking buffer (3% [w/v] BSA in PBS at RT and then incubated (1 hr with primary antibodies diluted in blocking buffer at RT. The primary antibodies to the Glu-Glu epitope tag (Covance) and SRC (Cell Signaling Technology) were used. The coverslips were washed with 0.5% Tween 20/PBS. The primary antibodies were detected by incubation with anti-mouse or anti-rabbit immunoglobulin conjugated to Alexa Fluor 488 or 546 (Life Technologies). Fluorescence was visualized using a Leica TCS SP2 confocal microscope equipped with a 405-nm diode laser.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures and four figures and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2017.08.025.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

We thank Vicky Benoit and Heather Leanard for expert technical assistance and Kathy Gemme for administrative assistance. These studies were supported by NIH grants DK107220 and DK112698 (to R.J.D.) and American Heart Association grant 16SDG29660007 (to S.K.). The UMASS Mouse Metabolic Phenotyping Center is supported by NIH grant DK093000 (to J.K.K.). R.A.F. and R.J.D. are investigators of the Howard Hughes Medical Institute.

Received: May 10, 2016
Revised: June 30, 2017
Accepted: July 29, 2017
Published: September 19, 2017

REFERENCES

