Mechanism-based strategies for the management of autoimmunity and immune dysregulation in primary immunodeficiencies

Jolan E. Walter
University of South Florida St. Petersburg

Jocelyn R. Farmer
Massachusetts General Hospital

Zsofia Foldvari
University of Oslo

Troy R. Torgerson
University of Washington - Seattle Campus

Megan A. Cooper
Washington University School of Medicine in St. Louis

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
http://digitalcommons.wustl.edu/open_access_pubs/6312

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Mechanism-Based Strategies for the Management of Autoimmunity and Immune Dysregulation in Primary Immunodeficiencies

Jolan E. Walter, MD, PhDa,b,c, Jocelyn R. Farmer, MD, PhDd, Zsofia Foldvari, MDe,f, Troy R. Torgerson, MD, PhDg, and Megan A. Cooper, MD, PhDh

St Petersburg, Fla; Boston, Mass; Oslo, Norway; Seattle, Wash; and St Louis, Mo

A broad spectrum of autoimmunity is now well described in patients with primary immunodeficiencies (PIDs). Management of autoimmune disease in the background of PID is particularly challenging given the seemingly discordant goals of immune support and immune suppression. Our growing ability to define the molecular underpinnings of immune dysregulation has facilitated novel targeted therapeutics. This review focuses on mechanism-based treatment strategies for the most common autoimmune and inflammatory complications of PID including autoimmune cytopenias, rheumatologic disease, and gastrointestinal disease. We aim to provide guidance regarding the rational use of these agents in the complex PID patient population. © 2016 The Authors. Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). (J Allergy Clin Immunol Pract 2016;4:1089-100)

Key words: Primary immunodeficiencies (PIDs); Treatment; Autoimmunity; Cytopenias; Arthritis; Vasculitis; Lupus; Autoimmune enteropathy (AIE); Inflammatory bowel disease (IBD)

Autoimmune and inflammatory diseases can complicate the course of primary immunodeficiency (PID) and the complex care of these patients. 1 The clinical spectrum is broad and frequently includes autoimmune cytopenias, rheumatologic disease, and gastrointestinal (GI) disease. 2,3 The pathogenesis of immune dysregulation leading to autoimmunity in PIDs was recently comprehensively reviewed. 1 In light of mechanistic understanding, it is timely to review management strategies.

Balancing immunosuppressive therapy in patients with susceptibility to infection is a clinical challenge. Treatment success hinges on correcting the underlying immune dysregulation while minimizing nonspecific immune suppression. Herein, we will review the management of PID-associated autoimmunity by therapeutic mechanism: targeting B-cell, T-cell, or innate immune pathology or using hematopoietic stem cell transplantation (HSCT) to reconstitute the immune system.

TREATMENT OF AUTOIMMUNE CYTOPENIAS IN PIDs

Although autoimmune cytopenias, including autoimmune hemolytic anemia (AIHA), immune thrombocytopenic purpura (ITP), and autoimmune neutropenia, occur in the general population, they are particularly common in patients with PID. As an example, PID was uncovered in 13% of children with AIHA5 and up to 50% of children with multilineage cytopenias (Evans syndrome).4 Autoimmune cytopenias have been described in both innate and adaptive immune deficiencies3,7 and may be the first sign of immune dysregulation that precedes the classical presentation of PID with recurrent or opportunistic infections.3,9 Clinical warning signs that may prompt the clinician to consider PID at an earlier stage include multilineage cytopenias, AIHA with no response to first-line therapy, persistent/chronic ITP, and autoimmune neutropenia in a patient older than 2 years and/or persistent for more than 24 months.10-14

Corticosteroids are the mainstay of treatment for AIHA with a high response rate around 80% in the general population.15 For ITP, corticosteroids or high-dose intravenous immunoglobulin (IVIG) are considered first-line therapy.16 In the fraction of patients who relapse after these therapies, splenectomy has been the traditional second-line approach. With the advance of biologics, anti-CD20 antibody (rituximab) is now considered an effective second-line approach although randomized clinical trials are lacking. In general, clinical approach in treatment-resistant cases is one of therapeutic trial and error in the absence of a guiding underlying immunophenotype or
biomarkers to direct care. In contrast, second-line treatment strategies for PID-associated autoimmune cytopenias are increasingly being targeted to the underlying mechanism of immunopathology.

Targeting B-cell pathology

Several studies address the approach to autoimmune cytopenias in the background of common variable immunodeficiency (CVID), a heterogeneous condition defined by decreased serum immunoglobulin levels (low IgG level with low IgM and/or IgA level), frequent infections, and poor antigen-specific antibody titers. Classical CVID is considered to be a primary disorder of B cells. However, improved genetic discovery and immunophenotyping has led to reclassification of a growing CVID subset as de facto combined immunodeficiency (CID). The link between CVID and autoimmunity was first established in the 1990s and has been greatly expanded since that time (Table I). Initial treatment regimens for autoimmune cytopenias included combinations of corticosteroids, high-dose IVIG, and anti-Rho(D) in the case of ITP. These guidelines were extrapolated from the standard of care in the general population. Initial response rates to corticosteroids were reasonable, 85% for ITP and 81% for AIHA; however, prolonged use was often required, which increased the risk for infection as a secondary complication. Before the era of biologics, nearly half of these autoimmune cytopenias cases ultimately required second-line splenectomy (response rates of 60%-80%), which was in contrast to the majority of first-line treatment responders seen in the general population. Other agents such as vincainalkaloids, danazol, cyclophosphamide, azathioprine, and cyclosporine did not show long-term success and are now rarely used.

In 2004, rituximab was introduced as second-line therapy for CVID-associated AIHA. In a subsequent multicenter study of 33 patients with CVID with refractory autoimmune cytopenias, which included steroid dependence (56%), immunomodulatory therapy (44%), and previous splenectomy (21%), rituximab was demonstrated to have a durable response rate of 59%. The authors proposed that rituximab be considered standard second-line therapy, before splenectomy and/or other immunomodulatory therapy, in CVID-associated autoimmune cytopenias. Although 24% of patients developed severe bacterial infections after rituximab treatment, half of these cases were off immunoglobulin replacement therapy and/or had undergone splenectomy. Although a matter of concern, the rate of severe bacterial infections was not significantly different than that observed in patients with CVID with ITP treated by the more traditional approach of corticosteroids with or without high-dose IVIG. Therefore, the risk for infection with rituximab use needs to be considered primarily in patients with CVID not receiving immunoglobulin replacement therapy.

Response to B-cell depletion therapy in most cases of CVID-associated autoimmune cytopenias localized the immunopathology to the B-cell compartment and suggested that other therapies targeting this compartment may also be efficacious. It should be emphasized that rituximab depletes only maturing B cells and does not target long-lived plasma cells that can sustain autoantibody production in lymphoid niches for some time (months) after treatment. Alternative B-cell–directed therapy may include bortezomib, a proteasome inhibitor that is approved for the treatment of multiple myeloma and preferentially causes apoptosis of antibody-producing plasma cells through activation of the unfolded protein response. Bortezomib has shown promising results in peritransplant cases of PID-associated refractory autoimmune cytopenias specifically (4 of 5 patients with PID responded to treatment and only 2 patients required transition to alternative therapy). Additional B-cell–directed therapies currently in clinical trial include an anti-CD22 antibody (epratuzumab) and an anti-APRIL antibody. Both show promise in severe refractory autoimmune diseases including cytopenias, but are yet to be trialed in PID specifically. Finally, the terminal complement inhibitor eculizumab (anti-C5) has been used to rescue a patient from fatal complications related to treatment-refractory AIHA. Because it acts distal to the B cell in autoantibody-mediated diseases, it could in theory be applied in combination with B-cell–depleting therapies to more completely control disease. The mechanism of action for these biologics is reviewed in Figure 1.

Targeting T-cell pathology

Patients with PID with prominent T-cell dysfunction may not fully benefit from the removal of autoreactive B cells. In autoimmune lymphoproliferative syndrome (ALPS), the accumulation of pathognomonic TCRζβ⁺CD4⁺CD8⁻ (double-negative) T cells occurs secondary to defective apoptosis. Although autoimmune cytopenias are a key feature of the disease (Table I), rituximab is a therapy of last resort given the associated finding of profound and prolonged hypogammaglobulinemia up to 4 years posttreatment. Similarly, splenectomy is less preferred because it may result in unfavorable outcomes with recurrent cytopenias and high rates of sepsis (41%) in patients with ALPS. The conventional first-line therapy for ALPS-associated autoimmune cytopenias has been corticosteroids, but second-line therapies including mycophenolate mofetil (a prodrug of mycophenolic acid that inhibits inosine monophosphate dehydrogenase and suppresses T and B cells) and sirolimus (an mTOR inhibitor) that more effectively target double-negative T cells are increasingly...
<table>
<thead>
<tr>
<th>PID</th>
<th>Immunologic defect</th>
<th>AI cytopenias prevalence (%)</th>
<th>Rheum disease prevalence (%)</th>
<th>GI disease prevalence (%)</th>
<th>Other noninfectious manifestations</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVID</td>
<td>Polygenic Low IgG (low IgA or IgM), low vaccine titers, low sm B cells, high CD19<sup>hi</sup>21<sup>lo</sup> B cells</td>
<td>ITP (5.6-14.2)</td>
<td>RA (3.2)</td>
<td>Diarrhea (14-23)</td>
<td>Lymphoproliferative pathology (LAD, HSM, GLILD, NRH, leukemia, lymphoma) Other autoimmunity (hepatitis, alopecia, thyroiditis, vitiligo)</td>
<td>20-24</td>
</tr>
<tr>
<td>XLA</td>
<td>BTK Low/absent circulating B cells, loss of germinal centers, pan low immunoglobulins, impaired innate immune signaling, decreased TTh cells</td>
<td>ITP (2.7<sup>+</sup>)</td>
<td>RA/JIA (1.8<sup>-</sup>-16)</td>
<td>Diarrhea (8<sup>-</sup>-29)</td>
<td>Neutropenia in the setting of overwhelming infection</td>
<td>25-29</td>
</tr>
<tr>
<td>ALPS</td>
<td>TNFRSF6 (FAS), TNFSF6 (FASL), CASP10 High DN T cells, IL-10, IL-18, vitamin B12, FAS; decreased FAS-mediated apoptosis</td>
<td>ITP (26-39)</td>
<td>Uveitis (1-10)</td>
<td>IBD (case reported)</td>
<td>Rheumatoid arthritis (LAD, HSM, GLILD) Other autoimmunity (hepatitis, PBC, GBS, GN)</td>
<td>30-35</td>
</tr>
<tr>
<td>pDGS</td>
<td>22q11.2 Impaired thymic development, decreased T-cell number & function, variably decreased IgG/IgM & & sm B cells</td>
<td>ITP (3.1-6.3)</td>
<td>Vasculitis (3.1)</td>
<td>IBD (0.5)</td>
<td>Craniofacial anomalies, hypoplastic thymus, conotruncal cardiac anomalies, hypocalcemia Other autoimmunity (thyroiditis)</td>
<td>36-39</td>
</tr>
<tr>
<td>CTLA4</td>
<td>CTLA4 (haploinsufficiency) Impaired FOXP3+ Treg cells, activated effector & decreased naive T cells, low IgG, low B cells, high CD21<sup>hi</sup> B cells</td>
<td>ITP (35)</td>
<td>Arthritis (14)</td>
<td>Diarrhea/AIE (78)</td>
<td>Lymphoproliferative pathology (LAD, HSM, GLILD) Other autoimmunity (thyroiditis)</td>
<td>40-42</td>
</tr>
<tr>
<td>LRBA</td>
<td>LRBA Decreased/impaired FOXP3+ Treg cells, activated T effector cells, low IgG, low B cells (sm B cells and plasmablasts)</td>
<td>ITP (29-52)</td>
<td>Arthritis (26)</td>
<td>Diarrhea/AIE (61-62)</td>
<td>Growth retardation, eczema Lymphoproliferative pathology (LAD, HSM, GLILD, lymphoma) Other autoimmunity (T1DM, thyroiditis, hepatitis, alopecia)</td>
<td>43-45</td>
</tr>
<tr>
<td>IPEX</td>
<td>FOXP3 Impaired FOXP3+ Treg cells, high IgE, high eosinophils, low TH<sub>1</sub> cytokines, high TH<sub>2</sub> cytokines</td>
<td>AIHA or ITP or AN (31)</td>
<td>Arthritis (1)</td>
<td>Diarrhea/AIE (92)</td>
<td>FTT, severe dermatitis Lymphoproliferative pathology (LAD, HSM) Other autoimmunity (early-onset T1DM, thyroiditis, hepatitis)</td>
<td>46</td>
</tr>
<tr>
<td>STAT3-GOF</td>
<td>STAT3 Decreased/impaired FOXP3+ Treg cells, increased DN T cells, variably low IgG</td>
<td>ITP (62)</td>
<td>Arthritis (15-20)</td>
<td>AIE (38-60)</td>
<td>Short stature, eczema Lymphoproliferative pathology (LAD, HSM, GLILD, lymphoma) Other autoimmunity (T1DM, thyroiditis, alopecia, scleroderma, hepatitis)</td>
<td>47,48</td>
</tr>
<tr>
<td>STAT1-GOF</td>
<td>STAT1 Augmented TH<sub>1</sub>, decreased/ impaired TH<sub>17</sub>, low memory B cells, low IgG<sub>3</sub>/ IgG<sub>F</sub></td>
<td>AIHA or ITP (4)</td>
<td>SLE (2)</td>
<td>AIE (4)</td>
<td>Aneurysms, eczema, carcinomas Other autoimmunity (thyroiditis, T1DM, alopecia, vitiligo, psoriasis, hepatitis)</td>
<td>49,50</td>
</tr>
</tbody>
</table>
Sirolimus was first trialed in 4 corticosteroid-refractory patients with ALPS in 2009 and resulted in marked improvements in both autoimmune cytopenias and associated systemic inflammatory features (arthritis, colitis, lymphadenopathy, and splenomegaly). In a subsequent trial of 30 patients with refractory autoimmune cytopenias across multiple PIDs (CVID and ALPS), sirolimus resulted in a complete and durable remission in most patients. Treatment response in ALPS has been shown to coincide with a specific reduction in double-negative T cells, which are particularly dependent on an intact mTOR pathway.

Autoimmune cytopenias have been associated with partial DiGeorge syndrome, occasionally preceding diagnosis of the underlying genetic defect (Table 1). Sirolimus has been proposed to induce autoimmunity. To date, large studies do not exist as to the optimal therapeutic approach. Steroids and azathioprine have been anecdotally used to treat ITP with benefit. Progression despite rituximab has been reported in 2 cases of severe autoimmune cytopenias associated with partial DiGeorge syndrome, one requiring HSCT for definitive treatment and the other requiring plasmaphoresis in combination with splenectomy for stabilization.

Autoimmune cytopenias can also occur in the setting of regulatory T-cell (Treg) dysfunction. Cytotoxic T-lymphocyte antigen 4 (CTLA4) haploinsufficiency is a novel autosomal-dominant immunodeficiency in which decreased CTLA4 cell surface expression results in impaired Treg-cell suppressor function. It has been associated with a broad clinical spectrum of autoimmunity including high rates of ITP and AIHA (Table 1). Here, direct complementation of the underlying immunoregulatory defect...
with CTLA4-immunoglobulin (abatacept) has been anecdotally reported to treat pancytopenia and associated life-threatening autoimmunity otherwise refractory to corticosteroids, tacrolimus, azathioprine, cyclophosphamide, and sirolimus.10 LPS-responsive vesicle trafficking, beach and anchor containing protein (LRBA) deficiency is an associated autosomal-recessive

<table>
<thead>
<tr>
<th>Gene</th>
<th>Function</th>
<th>Autoimmune cytopenias</th>
<th>Treatment strategies</th>
<th>Associated autoimmunity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAG1, RAG2</td>
<td>dsDNA cleavage during V(D)J recombination</td>
<td>AIHA, ITP, AN</td>
<td>Steroids, IVIG, rituximab, HSCT</td>
<td>Vasculitis, GBS, MG, psoriasis, vitiligo</td>
<td>92,98,99</td>
</tr>
<tr>
<td>DCLRE1 (ARTEMIS)</td>
<td>Nonhomologous end joining, opening the hairpins</td>
<td>AIHA, ITP, AN</td>
<td>NA</td>
<td></td>
<td>100,101</td>
</tr>
<tr>
<td>ADA</td>
<td>Deamination of adenosine and 2'-deoxyadenosine</td>
<td>AIHA, ITP</td>
<td>PEG-ADA, HSCT</td>
<td>AI thyroiditis, T1DM</td>
<td>102</td>
</tr>
<tr>
<td>PNP</td>
<td>Conversion of inosine and guanosine to hypoxanthine</td>
<td>AIHA, ITP</td>
<td>Steroids, rituximab, azathioprine, cyclophosphamide, HSCT</td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>RMRP</td>
<td>RNA component of the mitochondrial RNA processing (RMRP) endoribonuclease complex</td>
<td>AIHA, ITP post-HSCT</td>
<td>Steroids, IVIG, rituximab, HSCT</td>
<td>Granulomas</td>
<td>104</td>
</tr>
<tr>
<td>TRAC</td>
<td>Loss of TCR (transmembrane & intracytoplasmic domains)</td>
<td>AIHA</td>
<td>Treatment is not discussed, s/p HSCT</td>
<td>Vitiligo, alopecia areata, pityriasis rubra pilaris</td>
<td>105</td>
</tr>
<tr>
<td>IL-7R</td>
<td>Signaling through the IL-7 receptor ensures the development of mature B cells & T cells</td>
<td>AIHA, ITP</td>
<td>Treatment is not discussed, s/p HSCT</td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>CD3γ</td>
<td>TCR signal transduction</td>
<td>AIHA, ITP</td>
<td>Steroids</td>
<td>AI hepatitis & thyroiditis, minimal change disease</td>
<td>107</td>
</tr>
<tr>
<td>ZAP70</td>
<td>CD3ζ binding, T-cell activation</td>
<td>ITP</td>
<td>IVIG</td>
<td>Arthritis, nephritis in the mouse model</td>
<td>108</td>
</tr>
<tr>
<td>LCK/p56</td>
<td>TCR signaling, associated with CD4 and CD8, upon activation mediates phosphorylation of CD3 and ZAP70</td>
<td>ITP</td>
<td>Steroids, HSCT</td>
<td>Retinal vasculitis, sterile septal and lobular neutrophilic panniculitis, sterile arthritis</td>
<td>109</td>
</tr>
<tr>
<td>MST1/STK4</td>
<td>Interacts with Foxo1 that controls IL-7Ra expression in naive T cells and T-cell homeostasis</td>
<td>AIHA, ITP, AN</td>
<td>Steroids, IVIG, rituximab, cyclophosphamide, azathioprine</td>
<td></td>
<td>110-112</td>
</tr>
<tr>
<td>ORA11 (CRACM1)</td>
<td>Store-operated calcium entry, interaction with STIM1, T-cell activation</td>
<td>ITP, AN</td>
<td>NA</td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>STIM1</td>
<td>ER-resident calcium sensor, activates ORAI1 to promote store-operated calcium entry</td>
<td>AIHA, ITP</td>
<td>Steroids</td>
<td></td>
<td>114</td>
</tr>
<tr>
<td>MAGT1</td>
<td>Magnesium-specific transporter and immune regulator</td>
<td>Unspecified cytopenias</td>
<td>NA</td>
<td></td>
<td>115</td>
</tr>
<tr>
<td>PIK3CD (PI3K-D)</td>
<td>Akt-mTOR pathway activation, generation of short-lived effector CD8+ cells</td>
<td>AIHA, ITP</td>
<td>NA</td>
<td></td>
<td>116,117</td>
</tr>
<tr>
<td>TPP2</td>
<td>Cell proliferation and survival, antiapoptotic</td>
<td>AIHA, ITP</td>
<td>Steroids, IVIG, cyclophosphamide, MMF, rituximab, sirolimus, HSCT</td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>DOCK8</td>
<td>Intracellular signal transduction</td>
<td>AIHA</td>
<td>NA</td>
<td>Thyroiditis</td>
<td>119,122</td>
</tr>
<tr>
<td>MHCII</td>
<td>Antigen presentation</td>
<td>Unspecified cytopenias</td>
<td>NA</td>
<td></td>
<td>7,123</td>
</tr>
</tbody>
</table>

AI, Autoimmune; AN, autoimmune neutropenia; ER, endoplasmic reticulum; GBS, Guillain-Barre syndrome; MG, myasthenia gravis; MMF, mycophenolate mofetil; NA, not annotated; T1DM, type 1 diabetes mellitus; TCR, T-cell receptor.
PID in which Treg-cell impairment occurs secondary to aberrant recycling of CTLA4 to the cell surface.43 It is strongly associated with systemic autoimmunity including cytopneas (Table I). Major treatment modalities have included corticosteroids (39%), IVIG (39%), mycophenolate mofetil (22%), abatacept (15%), tacrolimus/sirolimus (11%), and HSCT (11%).44 Interestingly, inhibition of lysosomal degradation via chloroquine/hydroxychloroquine rescued CTLA4 expression in LRBA-deficient cells in vitro45 and improved lymphoproliferative lung pathology in a patient with LRBA mutation in vitro;46 however, improvement in autoimmune cytopneas specifically is yet to be described.

Finally, patients with signal transducer and activator of transcription (STAT)-1-gain-of-function (GOF) mutations develop chronic mucocutaneous candidiasis and autoimmunity including cytopneas in the background of prominent T-cell dysregulation (Table I). Specifically, naive CD4+ T cells are uniquely biased toward IFN-γ production irrespective of polarizing conditions and expansion of follicular helper T cells relative to Treg cells has been shown.47 T-cell targeting with cyclosporine has been anecdotally used to treat AIHA in STAT1-GOF with benefit.48 Recently, a janus kinase 1/2 inhibitor (ruxolitinib) was used to treat 2 distinct cases of STAT1-GOF with associated autoimmunity including autoimmune cytopneas49 and refractory alopecia areata.50 Ruxolitinib was shown to reduce hyperresponsiveness to IFN-γ, restore T117 and Treg-cell counts, induce long-lasting control of autoimmunity (up to 6 months posttreatment51), and had the unexpected benefit of reducing the occurrence of mucocutaneous candidiasis in both cases.

Immune reconstitution

Patients with severe immunodeficiency may require progression to HSCT for definitive treatment. Wiskott-Aldrich syndrome is a well-described PID in which autoimmune cytopneas occur beyond abnormal platelet number, size, and function. AIHA is severe, early-onset, and poorly responsive to corticosteroids, and ITP mainly occurs postsplenectomy (Table I). The presence of autoimmunity increases disease severity and contributes to the indication for HSCT. Unfortunately, even after HSCT and/or gene therapy autoimmune cytopneas may resurface and become refractory44,48 as demonstrated by the 55% of patients with Wiskott-Aldrich syndrome who developed autoimmune cytopneas in the posttransplant period.45 Thrombopoietin receptor agonists such as romiplostim and eltrombopag are emerging therapies for ITP, mainly by promoting platelet production. Because these agents are not immunosuppressive, they could be particularly useful in the treatment of ITP on a background of PID going forward.49,91

Finally, autoimmunity is increasingly recognized among patients with CIDs secondary to classical severe combined immunodeficiency (SCID)-related gene defects. Patients with recombination activating gene (RAG) mutations can have broad clinical heterogeneity ranging from early-onset severe infections (SCID phenotype) to delayed-onset autoimmune and inflammatory complications such as cytopneas, vasculitis, and granulomas (CID-AI/G phenotype).52 Specific RAG mutation, RAG activity, and ultimately the resultant B- and T-cell repertoire correlate well with these distinct phenotypes.93 Several checkpoints of B- and T-cell tolerance are impaired in RAG deficiency, which results in impaired removal of autoreactive cells (abnormal thymic selection, dysfunctional Treg cells, impaired B-cell receptor editing in the bone marrow, and elevated B-cell—activating factor [BAFF] expression).94-96 However, the relative contribution of these mechanisms in driving autoimmunity is still unclear. Treatment outcomes data in our RAG-deficient cohort suggest that second-line therapy with biologics is not standardized and often ineffective. Progression to HSCT for definitive treatment was ultimately required in 20% of patients with CID-AI/G with autoimmune cytopneas.97

Autoimmune cytopneas have been anecdotally reported in other CIDs (PIK3CD [PI3K-D], TTP2, and DOCK8) as well as in hypomorphic SCID variants (DCLRE1 [ARTEMIS], ADA, PNP, RMRP, and ORAI1) (Table I). The largest review to date details 14 hypomorphic ARTEMIS cases, where 6 of 14 patients (45%) had autoimmune cytopneas.108 For the other PIDs in this group, autoimmune cytopneas are more sporadically reported and treatment strategies have not been discussed in depth.

TREATMENT OF RHEUMATOLOGIC DISEASE IN PIDs

PIDs are now known to be associated with a spectrum of rheumatologic disease including inflammatory arthritis, vasculitis, systemic lupus erythematosus (SLE), and SLE-like disorders (Table I). It is not uncommon that rheumatologic disease is treated before the discovery of an underlying PID, which can result in substantial infectious complications. Indeed, delay in immunophenotyping and definitive treatment has resulted in increased morbidity and/or fatal outcomes in cases recently reported.98,124,125 Therefore, clinicians must consider the risk for infection when approaching therapeutic options for rheumatologic disease in PID. Here, we discuss PID-associated rheumatologic diseases with polyautoimmunity. There are a significant number of important PIDs that cause primarily rheumatologic disease, for example, complement deficiencies and monogenic disorders of dysregulated IL-1 production, which have been reviewed elsewhere.126-128

Targeting B-cell pathology

CVID has been associated with rheumatologic complications including inflammatory arthritis, vasculitis, and SLE (Table I). Most patients will require therapy beyond IVIG. Case reports have demonstrated successful use of rituximab to treat both CVID-associated SLE129 and ANCA-positive vasculitis.130 These data localize pathology to the B-cell compartment and suggest that other B-cell—targeting strategies may be efficacious. Belimumab is a novel therapeutic uniquely targeting BAFF that just gained Food and Drug Administration approval for the treatment of SLE.131 Rationale for its use originated in the notion that autoreactive B cells have less BAFF-R on their surface and reside in an anergic state when BAFF levels are normal.132 In inflammatory conditions, BAFF levels may elevate and contribute to the survival of autoreactive cells.133 Although promising, belimumab is yet to be trialed in CVID specifically and may need special consideration in patients with BAFF receptor deficiencies (TACI and BAFF-R). Other potential mechanisms of targeting B-cell pathology that may prove efficacious in CVID-associated rheumatologic disease have already been reviewed (Figure 1).

Targeting T-cell pathology

The predominance of rheumatologic complications seen in patients with Treg-cell dysfunction including CTLA4 haploinsufficiency, LRBA deficiency, and STAT3-GOF (Table I) converges on the hypothesis that FOXP3+CD25+CD4+ Treg...
cells play a critical role in host defense against the development of rheumatologic diseases including inflammatory arthritis. Consistent with this hypothesis, CTLA4-immunoglobulin therapy (abatacept) is approved by the Food and Drug Administration for the treatment of rheumatoid arthritis and juvenile idiopathic arthritis (JIA) in the general population. More recently, abatacept has shown benefit in PID. In LRBA deficiency, 2 children with inflammatory arthritis and uveitis (clinically consistent with JIA) demonstrated robust response to abatacept therapy. Inflammatory arthritis can also complicate the course of CTLA4 haploinsufficiency, and it is yet to be determined whether abatacept will be additionally beneficial in these cases. Finally, inflammatory arthritis has been reported in several patients with STAT3-GOF. Immunophenotype is notable for decreased Treg-cell numbers and functional expression of FOXP3 and CD25, potentially mediated by increased STAT3-dependent CD25, potentially mediated by increased STAT3-dependent Treg-cell inhibition in STAT3-GOF is indirect, clinicians hypothesized that the use of an anti-IL6R antibody (tocilizumab) might be beneficial via blocking upstream IL-6—induced STAT3 activation. To date, 1 patient with STAT3-GOF complicated by arthritis and scleroderma-like skin changes refractory to treatment with TNF-α inhibitors, anti–IL-1 therapy, and rituximab demonstrated sustained response to tocilizumab over a 1-year follow-up period.

Inflammatory arthritis is also a known complication of x-linked agammaglobulinemia, a PID in which autoreactive B cells are effectively absent because of maturation arrest at the pre—B-cell stage. Although infectious joint inflammation resolving on immunoglobulin replacement therapy is frequently seen in x-linked agammaglobulinemia, aseptic arthritis has also been described including presentations of rheumatoid arthritis, JIA, and enthesitis-related arthritis. Infiltrating CD8+ T cells can be seen on joint cytology. Underlying mechanisms of T-cell—driven autoimmunity and/or innate immune hyperactivation have been proposed. In these cases, IVIG alone can be insufficient management, progression despite methotrexate has been described, nonsteroidal anti-inflammatory drugs may provide some benefit, and there is no systematic guidance for the use of T-cell— or innate immune-targeted strategies to date.

Targeting innate immune pathology

In contrast to the PIDs previously presented, patients with chronic granulomatous disease (CGD) develop systemic autoimmunity in the background of a primary innate immune deficiency. Here, decreased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase results in defective phagocytosis. Profound aseptic hyperinflammatory responses are seen in CGD, characterized by loss of anti-inflammatory mediators, impaired clearance of apoptotic cells, and downstream CD4+ T-cell skewing, which can drive autoimmune arthritis in the mouse model. In patients, CGD has been associated with cutaneous discoid lupus erythematosus, chorioretinitis, inflammatory arthritis, vasculitis, and SLE as well as discoid lupus erythematosus in female carriers of x-linked disease (Table I). A single case series on treatment of rheumatologic manifestations in CGD recently demonstrated clinical stabilization with systemic corticosteroids (1 case of discoid lupus erythematosus), methotrexate (1 case of antiphospholipid syndrome), and etanercept (1 case of JIA). Although these anecdotal data are promising, anti–TNF-α therapies have been associated with invasive fungal disease even in immunocompetent hosts and should be used cautiously in these and other patients with PID with significant susceptibility to infection.

Immune reconstitution

HSCT has the potential to be curative for PID with autoimmunity in terms of reconstitution of the immune system and reduced susceptibility to infection. However, autoimmune disease can sometimes persist or even broaden posttransplant. A total of 70% of patients with Wiskott-Aldrich syndrome have associated autoimmunity, which can include inflammatory arthritis and vasculitis (Table I). Although arthritis and vasculitis generally improve after HSCT or gene therapy, there are several cases where autoimmunity has persisted or even newly arisen. RAG deficiency has also been associated with rheumatologic and autoimmune diseases including vitiligo, myasthenia gravis, and vasculitis (Table II). Progression of vasculitis in RAG deficiency despite treatment with corticosteroids, IVIG, and rituximab has been described. In contrast, HSCT in RAG deficiency has been case reported to be curative/preventative for polyautoimmunity. Because fewer posttransplant autoimmune complications were observed in patients with RAG deficiency compared with patients with impaired ARTEMIS, the benefit of HSCT may be PID-specific. However, additional clinical evidence is required to determine whether HSCT is truly curative for rheumatologic disease in PID. Optimal timing for transplantation, regimen for conditioning, and goal for donor chimerism are yet to be determined.

TREATMENT OF GI DISEASE IN PIDs

PIDs have been associated with a broad clinical spectrum of autoimmune GI disorders including gastritis (pernicious anemia), celiac disease, autoimmune enteropathy (AIE), and inflammatory bowel disease (IBD) (Table I). In the background of frequent infections (eg, Giardia, Campylobacter, Salmonella, rotavirus, enterovirus, and norovirus), diagnosis of nonspecific GI symptoms such as nausea, vomiting, diarrhea, and weight loss becomes particularly challenging. However, elucidating the underlying pathophysiology is critical given the associated finding of increased mortality in the PID subgroup with GI complications specifically.

Targeting T-cell pathology

Gastitis, AIE, and IBD have all been described in CVID. Small intestinal biopsy frequently demonstrates villous atrophy that resembles sprue apart from the absence of plasma cells. Lymphocytic infiltrates and occasional granulomas can occur both in the small intestine and in the colon, consisting predominantly of CD8+ T cells. Unfortunately, GI inflammatory disease in CVID has been notoriously difficult to treat. Despite benefit from combination rituximab/azathioprine therapy to manage granulomatous lung pathology, a similar response has not been seen in the inflamed GI tract. TNF-α inhibitors as well as the anti–αβ7 integrin monoclonal vedolizumab, which may inhibit T-cell trafficking to the GI mucosa, have been anecdotally reported as successful. We have a case of severe CVID-associated AIE with negative genetic testing for CTLA4 and LRBA mutations currently improving after 4 months of treatment with abatacept (weight gain, decreased stool output, decreased infiltrating T cells on biopsy)
(J.E. Walter and J.R. Farmer, unpublished data). Therefore, GI inflammatory disease may be a unique complication of CVID where B-cell targeting is insufficient and directed T-cell targeting is required to effectively manage this often life-threating complication.

Mounting data are converging on the importance of Treg cells in host defense against autoinflammation in the GI tract. Immune dysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX) is a profound disorder of FOXP3+CD25+CD4+ Treg cells caused by mutations in FOXP3. The pathognomonic clinical features of IPEX are severe and early-onset dermatitis, type 1 diabetes mellitus, and failure to thrive secondary to refractory diarrhea starting in infancy. A demonstrated break in peripheral B-cell tolerance leading to the production of autoantibodies to the brush border proteins villin and AIE-75 has been described. However, the role of antivillin and anti–AIE-75 in disease pathogenesis is entirely unclear. AIE on biopsy is characterized by villous atrophy with crypt abscesses, large pigment-containing macrophages, and noncaseating granulomas, which can be indistinguishable from Crohn disease.

Beyond intrinsic Treg-cell defects secondary to abnormal FOXP3, CD25, or STAT5b, interestingly, AIE and IBD are shared complications of other Treg-cell disorders including CTLA4 haploinsufficiency, LBRA deficiency, STAT1-GOF, STAT3-GOF, as well as mutated RAG1, DOCK8, and ITCH. Furthermore, autoimmune GI disease can be robustly induced (27%-54% symptomatic with watery diarrhea) on treatment with anti-CTLA4 biologics. These data again converge on the hypothesis that Treg cells are critical in gut homeostasis. To this end, infiltrating T cells have been demonstrated on intestinal biopsy in CTLA4 haploinsufficiency and lack of response to traditional therapeutics including TNF-Î² inhibitors has been demonstrated in LBRA deficiency. In contrast, sirolimus has been reliably efficacious in CTLA4 haploinsufficient patients, and immune reconstitution with abatacept has been shown to markedly reduce AIE.

Targeting innate immune pathology

Profound autoimmune GI disease can also occur in the setting of innate immune deficiency. Classic is CGD, where multiorgan granulomatous inflammatory pathology occurs, most prominently affecting the GI tract in up to 73% to 88% of patients (Table 1). Biopsy demonstrates skip lesions most frequently affecting the ano-rectum and consisting of crypt abscesses, large pigment-containing macrophages, and noncaseating granulomas, which can be indistinguishable from Crohn disease.

Despite the predisposition toward infection, no causative pathogens were identified in up to 93% of CGD-associated inflammatory GI disease cases, suggesting an underlying mechanism of aseptic autoimmunity. Treatment outcomes to date demonstrate limited benefit from corticosteroids (63%-86% relapse rate) and/or nonsteroidal anti-inflammatory drugs (50%-100% relapse rate). Immunosupmodation with methotrexate, azathioprine, cyclosporine, and thalidomide has been case reported as successful. Finally, despite efficacy in colitis management, TNF-Î² inhibitors should be avoided given the high rate of complicating deadly infections (2 deaths out of 5 infliximab-treated patients with CGD).

Immune reconstitution

In CGD, HSCT has been shown to be curative in terms of both the recurrent infections and the multiorgan granulomatous pathology. However, using full myeloablative conditioning, patients with peritransplant comorbidities including colitis had increased mortality, bringing up controversy as to the optimal timing and conditioning for transplant. More recently, reduced-intensity conditioning using high-dose fludarabine, serotherapy, and low-dose busulfan in high-risk CGD was shown to be both safe and effective (89% event-free survival at 21-month follow-up). Because this study included 33% of patients with active peritransplant colitis, the data suggest that this reduced-intensity conditioning HSCT can be considered in severe CGD cases complicated by IBD.

Finally, although directed immunosuppression in IPEX can help to reduce the burden of multiorgan inflammatory pathology, HSCT is the only definitive treatment. Improved outcomes are seen with earlier age and fewer comorbidities at time of transplant and with the use of reduced-toxicity conditioning regimens. Even in the case of partial donor chimerism, clinical disease remission has been reported, coinciding with the presence of full donor Treg cells. The selective advantage of wild-type Treg cells is consistent with the underlying pathophysiology of IPEX and may dictate Treg-cell sparing therapies for graft-versus-host disease in the postransplant period.

CONCLUSIONS

Autoimmune and inflammatory diseases can greatly complicate the care of patients with PID. Treatment strategies in PID should be targeted not only to the clinical spectrum of autoimmunity (cytophenias, rheumatologic disease, and/or GI disease) but also to the underlying molecular cause of immune dysregulation (B-cell, T-cell, and/or innate immune pathology). As we advance our understanding of mechanisms that mediate autoimmunity in PID, we inherently improve the care of our patients with PID and broaden our basic understanding of autoimmune and inflammatory disease.

Acknowledgment

We would like to acknowledge Dr Maurizio Miano from Hematology Unit, IRCCS Istituto Giannini Gaslini, Genoa, Italy for thoughtful comments on the section of autoimmune cytophenias in autoimmune lymphoproliferative syndrome and related diseases.

REFERENCES

Bennett CL, Ochs HD. IPEX is a unique X-linked syndrome characterized by immune dysfunction, polyendocrinopathy, enteropathy, and a variety of autoimmune phenomena. Curr Opin Pediatr 2001;13:533-8.

