Intermediate-term hip survivorship and patient-reported outcomes of periacetabular osteotomy: The Washington University Experience

Joel Wells
University of Texas Southwestern Medical School

Perry Schoenecker
Washington University School of Medicine in St. Louis

Stephen Duncan
Washington University School of Medicine in St. Louis

Charles W. Goss
Washington University School of Medicine in St. Louis

Kayla Thomason
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/6643
Intermediate-Term Hip Survivorship and Patient-Reported Outcomes of Periacetabular Osteotomy
The Washington University Experience

Joel Wells, MD, MPH, Perry Schoenecker, MD, Stephen Duncan, MD, Charles W. Goss, PhD, Kayla Thomason, BS, and John C. Clohisy, MD

Investigation performed at the Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri

Background: The Bernese periacetabular osteotomy (PAO) is an alternative to arthroplasty for treating symptomatic acetabular dysplasia, but there have been few studies on the intermediate-term outcomes of this procedure. In the present study, we assessed intermediate-term hip survival and patient-reported outcomes of PAO used to treat symptomatic acetabular dysplasia.

Methods: From July 1994 to August 2008, 238 hips (206 patients) were treated with PAO. Sixty-two had a diagnosis other than classic acetabular dysplasia, and 22 were lost to follow-up. The remaining 154 hips (129 patients) were evaluated at an average of 10.3 years postoperatively. Kaplan-Meier analysis was used to assess survivorship with an end point of total hip arthroplasty (THA). Hips were evaluated using the University of California at Los Angeles (UCLA) Activity Score, modified Harris hip score (mHHS), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale score. A WOMAC pain subscale score of ≤ 10 and/or an mHHS of ≤ 70 were considered to indicate a clinically symptomatic hip.

Results: Kaplan-Meier analysis revealed a hip survival rate of 92% (95% confidence interval [CI]: 82% to 97%) at 15 years postoperatively. Eight hips (5%) underwent THA at a mean (and standard deviation) of 6.8 \pm 5.2 years. Twenty-four additional hips (16%) were considered symptomatic based on a WOMAC pain score of ≤ 10 and/or an mHHS of ≤ 70. One hundred and twenty-two hips (79%) did not undergo THA and did not meet the criteria for symptoms, and these hips had a mean mHHS of 92.4 \pm 8.4, WOMAC pain subscale score of 1.2 \pm 1.9, and UCLA Activity Score of 7.7 \pm 2.0 at a mean of 10.1 years. A higher risk of failure was associated with fair or poor preoperative joint congruency (odds ratio [OR]: 8.65; 95% CI: 1.18 to 63.55; $p = 0.034$) and with a postoperative lateral center-edge angle of $>38^\circ$ (OR: 8.04; 95% CI: 2.01 to 32.22). A concurrent head-neck osteochondroplasty was associated with a decreased risk of failure (OR: 0.27; 95% CI: 0.09 to 0.78; $p = 0.016$).

Conclusions: This study demonstrates the durability of the Bernese PAO. Fair or poor preoperative joint congruency and excessive postoperative femoral head coverage were found to be predictors of failure, while concurrent head-neck osteochondroplasty in patients with an inadequate range of motion after PAO was associated with a decreased risk of failure.

Level of Evidence: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.

Developmental dysplasia of the hip is a major cause of osteoarthritis in young adults that often results in total hip arthroplasty (THA) at a young age. In affected hips, the predominant deformity is commonly acetabular dysplasia characterized by anterolateral acetabular insufficiency17. This aberrant anatomy causes changes in hip biomechanics and leads to axial overloading with a decreased contact area, increased contact pressure, and maximum loading at the rim8,11. Joint preservation surgery is a desirable option in young adults with symptomatic developmental dysplasia of the hip because

Disclosure: There were no external sources of funding for this study, which did receive funding from the Curing Hip Disease Fund at the authors’ institution (J.C.C.). On the Disclosure of Potential Conflicts of Interest forms, which are provided with the online version of the article, one or more of the authors checked “yes” to indicate that the author had a relevant financial relationship in the biomedical arena outside the submitted work (http://links.lww.com/JBJS/E587).
disease progression is common and THA may be associated with eventual prosthetic failure and activity restrictions.\(^{12-17}\)

Published data on the intermediate-term results of Bernese periacetabular osteotomy (PAO) are limited.\(^{18-21}\) Determining predictors of hip longevity in an effort to identify patients who are likely to have durable success following PAO remains a challenge. As PAO becomes more widely used,\(^ {8,18,22-25}\) an understanding of outcomes is needed not only to educate providers and determine which patients will benefit, but also to identify modifiable risk factors to improve outcomes. Failure and poor outcomes have been linked to advanced age, poor joint congruency, preoperative arthrosis, and a nonspherical femoral head without intraoperative offset correction.\(^{19-21,25,26}\) Therefore, we assessed the intermediate-term hip survivorship and patient-reported outcomes of PAO for treating symptomatic developmental dysplasia of the hip. We hypothesized that PAO would be associated with major symptom relief and excellent hip survivorship (>80%) at an average follow-up of 10 years.

Materials and Methods

This is a retrospective study of 154 hips (129 patients) with developmental dysplasia of the hip identified through a review of the prospective institutional Hip Database of the Department of Orthopaedic Surgery at Washington University, which includes all patients treated with PAO. Institutional review board approval was obtained for the present study. All patients who underwent PAO for symptomatic developmental dysplasia of the hip from July 1994 to August 2008 were eligible for inclusion. The exclusion criteria were a neuromuscular or connective-tissue disorder, prior trauma, and additional diagnoses other than developmental dysplasia of the hip such as Legg-Calvè-Perthes disease, slipped capital femoral epiphysis, and acetabular retroversion.

Patients who presented to the senior authors (J.C.C. and P.S.) with symptomatic developmental dysplasia of the hip, with radiographic evidence of femoral head uncovering, and a lateral center-edge angle of <25° were offered treatment with PAO. Contraindications to PAO include osteoarthritis without sufficient cartilage to correct into the weight-bearing zone and prior hip trauma. In total, 238 PAOs were performed on 206 patients during the study period. Sixty-two hips were excluded because the patient underwent PAO for indications other than developmental dysplasia of the hip, or for additional diagnoses that did not meet the inclusion criteria, and another 22 hips were considered lost to follow-up because the patient could not be contacted.

TABLE 1 **Patient Demographics (N = 154 Hips)**

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age* (yr)</td>
<td>26, 10-60</td>
</tr>
<tr>
<td>Female (no. [%] of hips)</td>
<td>132 (86%)</td>
</tr>
<tr>
<td>Height* (in [cm])</td>
<td>66 (167.6), 57-74 (144.8-188.0)</td>
</tr>
<tr>
<td>Weight* (lb [kg])</td>
<td>149 (67.6), 81-245 (36.7-111.1)</td>
</tr>
<tr>
<td>Body mass index* (kg/m²)</td>
<td>24, 17-34</td>
</tr>
</tbody>
</table>

*The values are given as the mean, range.
reached for follow-up at a minimum of 4 years after the PAO. Patients whose treatment failed and who went on to undergo THA within the 4-year follow-up window were included in the study. A total of 154 hips in 129 patients (86% follow-up rate) met the inclusion criteria (Fig. 1). The average patient age was 26 years (range, 10 to 60 years). There were 113 female patients (132 hips, 86%) and 16 male patients (22 hips, 14%) (Table I).

Conversion to THA or a symptomatic hip was considered a failure of PAO. Hips were classified as symptomatic if the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score was ≥10 and/or the modified Harris hip score (mHHS) was ≤70, in accordance with studies that have correlated these thresholds with substantial symptomatology.\(^{21,28,29}\)

TABLE II Patient and Hip Characteristics by Outcome

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. (%)</th>
<th>P Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age >25 yr</td>
<td>58 (48%)</td>
<td>0.165</td>
</tr>
<tr>
<td>Female</td>
<td>102 (84%)</td>
<td>0.076</td>
</tr>
<tr>
<td>Body mass index ≥30 kg/m²</td>
<td>8 (7%)</td>
<td>0.900</td>
</tr>
<tr>
<td>Surgery prior to PAO</td>
<td>17 (14%)</td>
<td>0.302</td>
</tr>
<tr>
<td>Concurrent head-neck osteochondroplasty</td>
<td>59 (48%)</td>
<td>0.007</td>
</tr>
<tr>
<td>Concurrent proximal femoral osteotomy</td>
<td>8 (7%)</td>
<td>0.007</td>
</tr>
<tr>
<td>Concurrent arthroscopy/labral repair/labral debridement</td>
<td>17 (14%)</td>
<td>0.823</td>
</tr>
<tr>
<td>Preoperative radiographic characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum joint space ≤2 mm</td>
<td>5 (5%)</td>
<td>0.220</td>
</tr>
<tr>
<td>Joint congruency poor or fair</td>
<td>6 (5%)</td>
<td>0.035</td>
</tr>
<tr>
<td>Crossover sign positive</td>
<td>5 (5%)</td>
<td>0.622</td>
</tr>
<tr>
<td>Anteroposterior alpha angle >55° ‡</td>
<td>18 (15%)</td>
<td>0.558</td>
</tr>
<tr>
<td>Lateral alpha angle >55° §</td>
<td>5 (5%)</td>
<td>0.193</td>
</tr>
<tr>
<td>Lateral center-edge angle</td>
<td>56 (47%)</td>
<td>0.242</td>
</tr>
<tr>
<td>5°-15°</td>
<td>53 (45%)</td>
<td></td>
</tr>
<tr>
<td>>15°</td>
<td>10 (8%)</td>
<td></td>
</tr>
<tr>
<td>Tönnis angle >10°</td>
<td>117 (98%)</td>
<td>0.605</td>
</tr>
<tr>
<td>Tönnis grade 2 or 3</td>
<td>5 (4%)</td>
<td>0.342</td>
</tr>
<tr>
<td>Anterior center-edge angle <20°§</td>
<td>101 (93%)</td>
<td>0.750</td>
</tr>
<tr>
<td>Postoperative radiographic characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum joint space ≤2 mm</td>
<td>5 (5%)</td>
<td>0.013</td>
</tr>
<tr>
<td>Joint congruency poor or fair</td>
<td>11 (34%)</td>
<td>0.006</td>
</tr>
<tr>
<td>Crossover sign positive</td>
<td>3 (9%)</td>
<td>0.659</td>
</tr>
<tr>
<td>Anteroposterior alpha angle >55° ‡</td>
<td>9 (28%)</td>
<td>0.090</td>
</tr>
<tr>
<td>Lateral alpha angle >55° §</td>
<td>8 (29%)</td>
<td>0.107</td>
</tr>
<tr>
<td>Lateral center-edge angle</td>
<td>6 (5%)</td>
<td>0.007</td>
</tr>
<tr>
<td>20°-38°</td>
<td>100 (84%)</td>
<td>0.005</td>
</tr>
<tr>
<td>>38°</td>
<td>6 (5%)</td>
<td>0.008</td>
</tr>
<tr>
<td>Tönnis angle <0°</td>
<td>14 (12%)</td>
<td>0.056</td>
</tr>
<tr>
<td>>10°</td>
<td>12 (10%)</td>
<td></td>
</tr>
<tr>
<td>Tönnis grade 2 or 3</td>
<td>12 (12%)</td>
<td></td>
</tr>
<tr>
<td>Anterior center-edge angle <20°</td>
<td>15 (13%)</td>
<td></td>
</tr>
</tbody>
</table>

*Data on some characteristics were missing for ≥1 hip. The percentages are based on the actual numbers of hips for which data were available. †Based on univariable comparisons between preserved and failed hips. ‡On any anteroposterior radiograph. §On any Dunn, frog-leg, or true lateral radiograph.
Twenty-four hips (16%) underwent surgery prior to PAO. The previous procedures included 12 pelvic osteotomies, 7 proximal femoral osteotomies, 9 open reductions performed when the patient was a child, and 2 arthroscopic procedures.

Seventy-eight hips (51%) had concurrent procedures. Sixty-six underwent femoral head-neck osteochondroplasty utilizing a Smith-Petersen approach, 21 underwent hip arthroscopy for labral resection or repair, and 8 underwent a proximal femoral osteotomy (7 varus-producing and 1 valgus-producing). There were no concurrent cartilage repair techniques. Hips that underwent a concurrent surgical procedure were assessed independently.

The PAO procedure has been previously described. After 2002, concurrent femoral head-neck osteochondroplasty was introduced into our practice, with the indications for that procedure being inadequate hip flexion (<90°) and <15° of internal rotation in flexion as judged intraoperatively after the PAO. Two surgeons (J.C.C. and P.S.) performed all PAOs, and all radiographic and clinical data were reviewed independently by 2 other authors (J.W., who reviewed clinical and radiographic data, and S.D., who reviewed clinical data only).

Clinical and Radiographic Analysis

The University of California at Los Angeles (UCLA) Activity Score, mHHS, and WOMAC are validated outcome measures that were used to assess activity, pain, and health-related quality of life. The WOMAC pain score addressed pain attributable to the surgically treated hip over 4 weeks with activities in- including (1) walking on a flat surface, (2) climbing up or down stairs, (3) lying in bed, (4) sitting or lying, and (5) standing upright. The pain was rated as 0 (none), 1 (mild), 2 (moderate), 3 (severe), or 4 (extreme), with the patient completing a separate score for each operatively treated hip. A telephone interview was performed with standardized scripting for patients who could not return for an examination (78 hips).

The lateral center-edge angle of Wiberg, acetabular roof angle of Tönnis, minimum joint space, joint congruency as described by Yasunaga et al., alpha angle, head-neck offset, and Tönnis grade were measured on preoperative, early postoperative, and late postoperative standing anteroposterior pelvic radiographs. The anterior center-edge angle described by Yasunaga et al. was defined as well rounded (radii of curvature of the acetabulum and femoral head identical and joint space maintained), good (curvature of femoral head and acetabulum not identical, but joint space preserved), fair (joint space partially narrowed), and poor (loss of joint space). One of the authors who was a fellow in hip preservation (J.W.) made all measurements, at 2 different settings 2 weeks apart to determine reliability.

Statistical Analysis

Statistical analysis of radiographic parameters was performed using intraclass correlation coefficients, which were calculated using a 2-way random model for single measurement with absolute testing. All measurements demonstrated excellent agreement. The intraclass correlation coefficients were 0.87 for joint space width, 0.84 for lateral center-edge angle, 0.96 for Tönnis angle, 0.99 for alpha angle measured on the anteroposterior radiograph, 0.99 for anterior center-edge angle, 0.95 for alpha angle measured on the frog-leg radiograph, and 0.97 for alpha angle measured on the Dunn radiograph.

The primary outcome variable was hip failure following PAO, with hip failure defined as conversion of the PAO to a THA or a symptomatic hip (one with a WOMAC pain score of ≥10 or an mHHS of ≤70) at the latest follow-up. The lateral center-edge angle was trichotomized, as previously described in the literature. Data were analyzed using logistic regression and generalized estimating equations to account for correlation between the 2 hips of patients who underwent bilateral PAO. Variables with significant associations (p < 0.05) with hip failure in univariable analyses were included in multivariable analysis, and the variables for the final multivariable analysis were selected using a backward elimination approach. Univariable generalized estimating equation models that did not converge were not considered for inclusion in the multivariable model. A logistic regression with generalized estimating equations was also used to analyze patients who had symptoms but not conversion to THA. Kaplan-Meier survival analysis was used to generate a survival plot for the time-to-THA outcome, and 95% confidence intervals (CIs) were estimated using a log-log transformation. Patients who did not undergo a THA were censored at their most recent follow-up date. Preoperative and postoperative characteristics were compared using linear mixed models that included a random effect to account for correlation between the 2 hips of patients with bilateral PAO. All analyses were conducted using SAS version 9.4 (SAS Institute). All statistical analysis was 2-tailed, and p values of <0.05 were considered significant.

Results

Survival analysis of PAO with an end point of THA revealed a 5-year survival rate of 97% (95% CI: 93% to 99%),
a 10-year survival rate of 95% (95% CI: 89% to 98%), and a 15-year survival rate of 92% (95% CI: 82% to 97%). One hundred and twenty-two hips (79%) were preserved—i.e., were not converted to THA and did not meet the criteria for substantial symptoms at the time of follow-up (mean, 10.3 years; range, 4.1 to 20.5 years). Thirty-two hips were classified as failures: 8 (5%) underwent THA at an average (and standard deviation [SD]) of 6.8 ± 5.2 years after surgery, and 24 (16%) developed symptoms (a WOMAC pain score of ≥ 10 and/or an mHHS of ≤ 70) but did not undergo THA (Table II).

Analysis of the differences between the preoperative and postoperative radiographic measurements showed a mean improvement of 27° (from 3° preoperatively to 30° postoperatively; $p < 0.001$) in the lateral center-edge angle, 20° (from 24° to 4°; $p < 0.001$) in the Tönnis angle, and 30° (from 1° to 31°; $p < 0.001$) in the anterior center-edge angle (Table III). At a mean of 10.3 ± 3 years, the patients reported a mean improvement from 66 ± 14 preoperatively to 86 ± 16 at the time of follow-up ($p < 0.001$) in the mHHS, from 7.3 ± 4.5 to 2.5 ± 3.7 ($p < 0.001$) in the WOMAC pain subscale score (Fig. 2), and from 6.5 ± 2.5 to 7.3 ± 2.1 ($p = 0.003$) in the UCLA Activity Score (Table IV). Hips that met no failure criteria had, on average, an mHHS of 92.4 ± 8.4, a WOMAC pain score of 1.2 ± 1.9, and a UCLA Activity Score of 7.7 ± 2.0 after a mean follow-up of 10.1 years (Table V).

Based on the adjusted logistic regression analysis, hips with fair or poor joint congruency preoperatively had 9 times the odds of being classified as a failure (odds ratio [OR]: 8.65; 95% CI: 1.18 to 63.55; $p = 0.034$; Table VI) when compared with hips that had good or excellent joint congruency preoperatively. In addition, hips with a postoperative lateral center-edge angle of $>38^\circ$ had 8 times the odds of failure (OR: 8.04; 95% CI: 2.01 to 32.22). However, hips that underwent concurrent head-neck osteochondroplasty at the time of PAO had a 73% decrease in the odds of failing (OR: 0.27; 95% CI: 0.09 to 0.78; $p = 0.016$) when compared with hips that did not undergo concurrent osteochondroplasty.

Complications were assessed and graded according to the modified Clavien-Dindo classification with a focus on identifying “major” (Grade-III or IV) complications. There were 12

Fig. 2

Histogram showing the distribution of WOMAC scores for hips that did not undergo arthroplasty.
TABLE IV Patient-Reported Outcomes for All Hips That Did Not Undergo Arthroplasty

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Preoperative</th>
<th>Postoperative</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mHHS</td>
<td>66 (14)</td>
<td>86 (16)</td>
<td><0.001</td>
</tr>
<tr>
<td>WOMAC pain</td>
<td>7.3 (4.5)</td>
<td>2.5 (3.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>UCLA</td>
<td>6.5 (2.5)</td>
<td>7.3 (2.1)</td>
<td>0.003</td>
</tr>
</tbody>
</table>

TABLE V Patient-Reported Outcomes at Most Recent Follow-up by Outcome

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Preserved (N = 122)</th>
<th>Symptomatic (N = 24)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to questionnaire (yr)</td>
<td>10.1 (3.1)</td>
<td>12 (3.9)</td>
<td>0.041*</td>
</tr>
<tr>
<td>mHHS</td>
<td>92.4 (8.4)</td>
<td>59.9 (11.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>WOMAC pain score</td>
<td>1.2 (1.9)</td>
<td>8.3 (3.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>UCLA Activity Score</td>
<td>7.7 (2.0)</td>
<td>5.8 (1.8)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*Although the difference in the time to the questionnaire between the preserved and symptomatic hips was significant, the time to the questionnaire had no effect on the primary outcome.

TABLE VI Adjusted Analysis of Variables Included in the Final Multivariable Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative fair or poor joint congruency</td>
<td>8.65 (1.18-63.55)</td>
<td>0.034</td>
</tr>
<tr>
<td>Postoperative lateral center-edge angle</td>
<td></td>
<td>0.010</td>
</tr>
<tr>
<td><20°*</td>
<td>2.11 (0.43-10.28)</td>
<td></td>
</tr>
<tr>
<td>>38°*</td>
<td>8.04 (2.01-32.22)</td>
<td></td>
</tr>
<tr>
<td>Concurrent head-neck osteochondroplasty</td>
<td>0.27 (0.09-0.78)</td>
<td>0.016</td>
</tr>
</tbody>
</table>

*The 95% CI overlapped that of the reference group (20°-38°); therefore, there was no evidence of a significant difference compared with the reference group.

Grade-III complications: 5 nonunions (2 iliac, 1 ischial, 1 posterior column, and 1 pubic) treated with open reduction, 3 cases of hematoma or deep infection treated with irrigation and debridement, 2 cases of heterotopic ossification treated with excision, 1 posterior column fracture treated with acute open reduction and internal fixation, and 1 lateral femoral cutaneous nerve laceration that required repair. There were no vascular injuries or cases of acetabular osteonecrosis.

Discussion

This is one of the largest intermediate-term follow-up studies analyzing outcomes after PAO for symptomatic developmental dysplasia of the hip. There has been limited reporting on the intermediate-term outcomes after PAO. We provide data on these outcomes and also aimed to identify factors associated with failure in a cohort that included only patients with classic symptomatic dysplasia without confounding diagnoses. We found that patients who underwent PAO at our center had excellent hip survivorship and improvements in functional scores. Our data suggest that preoperative joint incongruency and excessive acetabular correction are associated with a greater chance of failure. Concurrent head-neck osteochondroplasty was associated with a decreased risk of failure.

This study is limited by its retrospective nature and single-center experience of 2 high-volume surgeons. The senior authors are experienced PAO surgeons, which may limit the generalizability of the results. Retrospective studies are subject to selection, indication, and temporal biases. The absence of a control group also limits reference to an untreated cohort. While we cannot mitigate selection bias, we believe that our stringent inclusion criteria allow for meaningful conclusions regarding a clearly defined group. Indication and temporal biases are limitations of this study as it spanned a period longer than 2 decades. Postoperative hip survivorship and patient-reported outcomes were not available for the 22 hips that were lost to follow-up; therefore, these cases represent the best-case scenario—because any negative outcomes they may have had were not included in the analysis—and introduce transfer bias. Although both hips in patients with bilateral PAO were included for analysis, we used generalized estimating equations to adjust for potential correlation between the 2 hips. Also, mHHS and WOMAC pain data were utilized instead of international Hip Outcome Tool (iHOT) or NAHS (Non-Arthritic Hip Score) data, as the iHOT was not published until 2012 and the NAHS was not published until 2003. Collection of patient-reported outcome measures (PROMs) in this cohort of patients started in 1994, and we have continued with these measures in order to have preoperative and postoperative comparative measures. Lastly, femoral torsion was not evaluated and no preoperative or postoperative cross-sectional imaging was analyzed.

In a study of 68 hips followed for a mean of 20 years after PAO, Steppacher et al. reported that 41 hips (60%) were preserved and 8 (20%) of those 41 were graded as fair or poor according to the Merle d’Aubigné and Postel score. Several variables were identified as increasing the risk of failure, including an age of >30 years, a lower preoperative Merle d’Aubigné and Postel score, a positive preoperative anterior impingement test, a preoperative limp, preoperative arthrosis, and a higher postoperative extrusion index. Some patients had neuromuscular or posttraumatic dysplasia. Wells et al. reported on 121 hips followed for a mean of 18 years after treatment with PAO for symptomatic acetabular dysplasia. Twenty-six hips (21%) underwent THA, and 31 hips (26%) failed as indicated by a WOMAC pain score of ≥10. Variables that were predictive of long-term failure included an age of >25 years, a preoperative joint space width of ≤2 mm, and poor or
fair preoperative joint congruency. In the current study, in which 154 hips treated with PAO for developmental dysplasia were fol-
lowed for a mean of 10.3 years, 8 hips (5%) underwent THA at a
mean of 6.8 ± 5.2 years after the surgery and 24 additional hips
(16%) were considered symptomatic (a WOMAC pain score of
≥10 and/or an mHHS of ≤70). Our study showed that poor or
fair preoperative joint congruency and a postoperative lateral
center-edge angle of >38° were predictive of a failed outcome. In
addition, concurrent osteochondroplasty was protective.

Albers et al. analyzed the outcomes of 147 non-consecutive
patients, from 2 separate chronological series, who were divided
into 2 groups according to acetabular reorientation and ascphericity
of the femoral head. The authors concluded that proper acetabular
correction without introducing secondary femoroacetabular im-
pingement improved 10-year hip survivorship. To our knowledge,
no other studies have shown a correlation between radiographic
evidence of correction, especially that of secondary impingement,
and failure. Secondary femoroacetabular impingement is complex
and consists not only of acetabular orientation but also of the alpha
angle, head-neck offset, and femoral version. The benefit of an
optimal reorientation with concomitant osteochondroplasty re-
mains unclear.

In our series, we found a lateral center-edge angle of >38°
to be a predictor of failure and concurrent osteochondroplasty to
be associated with a decreased risk of failure. Our observations
suggest that preventing overcorrection and secondary impinge-
ment improves hip survival at 10-year follow-up. Given these
data, we currently assess for secondary impingement intra-
operatively following PAO. The hip must have at least 90° of
flexion and 15° of internal rotation in flexion. If these motion
criteria are not met, the femoral head-neck junction is inspected
to identify secondary femoroacetabular impingement and, if it is
present, osteochondroplasty of the head-neck junction is per-
formed to relieve potential secondary femoroacetabular im-
pingement. Uncommonly, PAO reduction is refined to allow
functional, impingement-free hip motion.

Despite favorable outcomes of acetabular reorientation
surgery, interest in treating acetabular dysplasia with isolated hip
arthroplasty persists. While a few publications have reported
favorable short-term outcomes and longer-term clinical out-
comes, reoperation rates, and survivorship data are still un-
known. In this study, we have shown that, at a mean of 10.3 years
after PAO, the large majority of patients are able to return to a
high level of activity with maintenance of an active lifestyle, pain
relief, and a high quality of life. We recommend against treating
patients with symptomatic acetabular dysplasia with isolated hip
arthroplasty as we are not aware of any long-term studies sup-
porting this approach and arthroscopy fails to address the un-
derlying pathomechanics found in developmental dysplasia of
the hip. Additionally, the data presented in this study should
serve as a useful comparison for alternative treatments of
symptomatic dysplasia.

In conclusion, at an average of 10.3 years after PAO, the
majority of hips (95%) had not undergone THA, although a
small number of additional hips (16%) were classified as
symptomatic. Three factors were identified as predictive of a
failed outcome (defined as THA, a WOMAC pain score of ≥10,
and/or an mHHS of ≤70): (1) poor or fair preoperative joint
congruency, (2) a postoperative lateral center-edge angle of >38°,
and (3) not undergoing concurrent osteochondroplasty. Al-
though poor preoperative congruency has been shown to be a
predictor of worse outcomes, we would consider a PAO for joint
stabilization and symptom relief in certain patients with poor
preoperative congruency (e.g., one who was very young and had
signs and symptoms of instability).

Based on these findings, we believe that avoiding post-
operative femoroacetabular impingement may optimize out-
comes and hip survivorship after PAO. Studies are under way to
better characterize the etiology of symptoms in patients who
are symptomatic but have not undergone THA and to identify
effective interventions for these patients.

References

1. Aronson J. Osteoarthritis of the young adult hip: etiology and treatment. Instr
2. Murphy SB, Ganz R, Müller ME. The prognosis in untreated dysplasia of the hip. A
study of radiographic factors that predict the outcome. J Bone Joint Surg Am. 1995
Dec;213:20-33.
4. Ganz R, Leunig M, Leunig-Ganz K, Harris WH. The etiology of osteoarthritis of the
hip: an integrated mechanical concept. Clin Orthop Relat Res. 2008 Feb;466

Note: The authors thank Geneva Ibac, BA, and Gail Pashos, BS, for their assistance with data
collection, patient follow-up, and study organization.
This article was updated on February 7, 2018, because of a previous error. On page 219, in Figure 1, the text that had read “122 Preserved Hips (WOMAC Pain Score <10, mHHS >70 and No THA)” now reads “122 Preserved Hips (WOMAC Pain Score <10, mHHS >70 and No THA).”