










Discussion
Advances in tissue engineering for both physiologic and
diseased tissue models have been achieved through 3D
printing of tissue scaffolds and direct bioprinting of cells
and tissue constructs, both of which have been previous
performed with spheroid and tissue-on-a-chip models
[15–25]. Although the use of 3D printing and bioprinting
has not been fully optimized, promising studies have dem-
onstrated its utility in fabricating implants in humans,
tissue-like constructs in animal models, and human-like

tissue models for drug screening [17–23]. 3D printed
ovary-like constructs have been implanted in mice with
surgically removed ovaries. The 3D printed ovary-like
constructs had a porous morphology, which accommo-
dated ovarian follicles in various stages of maturity. These
bioengineered ovary-like constructs allowed some mice to
become impregnated and produce offspring. Several in-
vestigators have used bioprinting to engineer tissue con-
structs for drug screening and disease modeling [25–27].
One group used bioprinting technology to assemble

Fig. 4 Images of Calcein-AM (green), ethidium homodimer 1 (red), and Hoechst 33342 fluorescence (blue) staining of (a and b) h-PMSC and (c)
h-ISMC at 72 h, Scale bar = 200 μm for each (a-c)

Fig. 5 Images of h-PMSC (a-d) stained with Calein AM at different cell densities at 72 h, scale bars = 200 μm. Images of Hoechst 33342 fluorescence
staining of h-PMSC (e) at 72 h at different focal planes, scale bar = 200 μm. Image of h-PMSC (f) monolayer on a flat polystyrene plate stained with
Calein AM, scale bar = 1000 μm
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human HepG2/C3A spheroids on a liver-on-a-chip plat-
form and demonstrated feasibility for this model for use
in drug toxicity screening [25].
This 3D printed microtissue insert approach can be

easily adapted for embryo culture, and in development
of tumor models and disease modeling. A potential ap-
plication of this model is in modeling tumor-endothelial
interactions in cancer invasion and metastasis. After
droplets containing spheroids have been transferred to
well bottoms, the spheroids contact, adhere, and eventu-
ally begin to migrate on the polystyrene surfaces. The
addition of a specific type of cell layer cell type on
underlying well bottom would permit evaluation of ad-
hesive and motile responses in tumor spheroids and
their responses to different drug treatments. These con-
siderations are now being explored and will be reported
in future studies.
Simple hanging drop concepts, hydrogels, and

biomaterials have been devised previously, but are not
designed for consumer grade 3D printers in 96-well
plate formats [28–30]. Hanging drop style 96-well plates
and ultra-low attachment systems exist on the market,
but may be challenging for groups to acquire due to the
cost. By comparison, the material cost for one PLA
96-well insert described in this study was $0.27 cents
($USD). This translates to $1.08 in material cost for 384
spheroid assays. The 3D printed PLA inserts can be
re-sterilized using gamma irradiation or as shown here,
using 70% ethanol, which further enhances cost effect-
iveness. Other high-temperature performing materials,
such as polycarbonates can also be used, which would
permit autoclaving. These types of customized cell cul-
ture inserts therefore have major advantages for research
groups with limited funding and access to consumer or
commercial grade 3D printers. 3D printing represents an
economical and practical tool for ad hoc, de novo, or

template-based creation of 3D printed constructs to aid
with tissue engineering, cell cultures, and other labora-
tory experiments [31].
This approach allowed rapid, high throughput and

reproducible production of cell spheroids for use in bio-
active screening assays. Through this method, a variety
of spheroids and co-cultures may be fabricated for
personalized medicine research. Higher cell numbers ap-
pear to encourage tighter cell-cell binding in spheroids
based on smoother profiles; this may be important in
models considering surface area, drug penetration and
nutrient/oxygen and waste exchange, all of which can be
‘tuned’ using applied cell counts. In this method, 40 μl
of cell-media was applied to each insert and cells
allowed to grow for 72 h. For testing drugs or bioactive
materials against spheroids, an additional 1–15 μl of a
desired bioactive-loaded solution can be loaded without
compromising drop stability. This system is not limited
to scaffold-free cultures, as other biomaterials and pre-
cious cargoes (e.g. micro and nanoparticles) may also be
added to the suspension cultures for tissue engineering
and drug carrier targeting studies. A limitation to the 3D
printed microtissue insert is the potential for suspension
dehydration overtime. However, 3–5 days is sufficient
for spheroid formation in an 100% humidity environ-
ment, which is critical for preventing suspension dehy-
dration. For long-term liquid suspension studies, inserts
may be modified to house a reservoir of media or liquid
to prevent evaporation. Such systems are currently being
designed and will be examined in the future.

Conclusions
The 3D printed microtissue inserts described in the
present study represents a cost-effective approach that
can be integrated in laboratories even with
consumer-grade 3D printers. A variety of tunable 3D
spheroid microtissues can be evaluated with this 3D
printed insert. Overall, it is suggested that these 3D
printed microtissue inserts have potential applications in
a variety of drug-delivery, disease modeling, and tissue
engineering systems.
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