Molecular and immune biomarker testing in squamous-cell lung cancer: Effect of current and future therapies and technologies

Jeffrey D. Bradley et al

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs
Molecular and Immune Biomarker Testing in Squamous-Cell Lung Cancer: Effect of Current and Future Therapies and Technologies

Abstract

Patients with non-small-cell lung cancer, including squamous-cell lung cancer (SqCLC), typically present at an advanced stage. The current treatment landscape, which includes chemotherapy, radiotherapy, surgery, immunotherapy, and targeted agents, is rapidly evolving, including for patients with SqCLC. Prompt molecular and immune biomarker testing can serve to guide optimal treatment choices, and immune biomarker testing is becoming more important for this patient population. In this review we provide an overview of current and emerging practices and technologies for molecular and immune biomarker testing in advanced non-small-cell lung cancer, with a focus on SqCLC.

Introduction

Over the past decade, determining the histology of non-small-cell lung cancer (NSCLC) has become standard because treatment options vary according to tumor histologic subtype. Multiple guidelines, including the National Comprehensive Cancer Network (NCCN), European Society for Medical Oncology, and the College of American Pathologists recommend that all patients with NSCLC undergo routine histopathologic evaluation at the time of initial diagnosis. Histologic subclassification and reclassification of lung tumors can be achieved with the use of the International Association for the Study of Lung Cancer (IASLC) classification system. This system, which is based on WHO criteria, assigns tumors to histology-specific subtypes based on the proportion of tumor cells that resemble specific cell types, including adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and others. The IASLC classification system has led to improved clinical outcomes and greater treatment selectivity for patients with NSCLC.
The pathologic diagnosis of NSCLC subtypes, which include SqCLC, adenocarcinoma, and large-cell carcinoma, is a multistep process.9 In most cases, the classic histologic features of tumor cells from SqCLC and other subtypes can be readily distinguished by evaluating tissue sections stained with hematoxylin and eosin.7,9 In the approximately 20% to 40% of challenging cases in which the NSCLC subtype cannot be determined using histology alone,10,11 limited IHC on tissue sections to specifically detect p40/p63, thyroid transcription factor 1 (TTF-1), and in a few cases, neuroendocrine biomarkers such as neuron-specific enolase and chromogranin A can be used to differentiate between SqCLC, adenocarcinoma, and large- and small-cell carcinoma, respectively.12-16 p40 is a more specific and sensitive marker for SqCLC than p63 (p40: sensitivity 100%, specificity 98%; p63: sensitivity > 90%, specificity approximately 60%-75%), whereas the TTF-1 marker has > 80% sensitivity and 97% specificity for adenocarcinoma.9,12,13,17,18 Cytokeratin 7 is preferentially expressed in adenocarcinoma19 and can be used as a biomarker to support the diagnosis of adenocarcinoma, but only when used alongside other markers because it is not specific for adenocarcinoma.

Specifically for SqCLC, routine molecular testing for alterations such as epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) gene rearrangements, and ROS proto-oncogene 1 (ROS-1) gene fusions is not recommended because of their very low incidence in SqCLC (< 4%, < 3%, and 0%, respectively).20-27 However, molecular testing for these alterations should be considered for patients with SqCLC who are younger, who have never smoked, or are former very light smokers (ie, < 15 packs per year), or for patients with small biopsy samples or mixed histology,1-3 and potentially for patients who are of Asian ethnicity, although the latter characteristic is not included in current guidelines. The NCCN and CAP/IASLC/AMP guidelines also advise performing broad molecular testing beyond EGFR mutations and ALK and ROS-1 gene alterations to assist in the identification of...
rare genomic drivers for which effective therapy might already be available (eg, translocations of the rearranged during transfec

tion gene and mesenchymal-epithelial transition exon 14 mutations) and to counsel patients regarding available clinical trials.1,3 With the recent approval of dabrafenib with trametinib for the treatment of patients with NSCLC whose tumors carry the proto-oncogene

BRAF V600E mutation,28 testing for this mutation could also be considered for SqCLC.3 However, the mutation is rare in SqCLC and routine testing is therefore not recommended.29,30 Thus, currently, most testing performed on SqCLC biopsy samples consists of p40/p63 immunostaining on tissue sections to confirm the histologic subtype and PD-L1 assessment to determine eligibility for checkpoint inhibition first-line treatment.

The turnaround time for obtaining the results of molecular testing is an important concern, because patients with advanced disease benefit from starting appropriate treatment as soon as possible. The CAP/IASLC/AMP guidelines for clinical practice recommend a maximum of 2 weeks for the completion of all molecular testing.1 A streamlined process that incorporates a multidisciplinary team is pivotal for meeting the benchmark turnaround time for the completion of all molecular tests (Figure 1).31 This process should include optimizing procedures and workflows, such as the transfer of tumor specimens between thoracic surgeons, interventional pulmonologists, radiologists, and pathologists, and intralaboratory communication. Recently, a study that analyzed routine nationwide molecular testing in France observed that obtaining results from molecular testing that approached acceptable turnaround times was feasible (median of 11 days from initiation of analysis to report of results).32

The type of assays used is also important, for which the CAP/IASLC/AMP guidelines further recommend that each laboratory determine the minimum proportion and number of cancer cells needed to detect a mutation during validation of an assay.1 These guidelines were last published in 2013, and updated guidelines with evidence-based expert consensus opinion will be published soon.

Last, it is important to consider potential differences in the implementation of molecular testing for NSCLC, including SqCLC, which might affect successful adoption into practice. These differences might arise partly because of regional availability of tests, reimbursement policies, and treatment settings (eg, community vs. academic centers).32-34 Greater uniformity in the practical implementation of molecular testing for NSCLC might be achieved through the development of inter- and intranstitutional and network pathways.32

Technologies for Molecular Testing in NSCLC—Current and New Methods

In practice, the use of multiplex or next-generation sequencing (NGS) platforms for molecular testing is often restricted to larger academic centers; many community treatment settings still rely on single-gene testing or sending samples out to commercial laboratories for testing. For molecular testing of EGFR mutations in NSCLC, guidelines recommend the use of any validated methodology with adequate coverage of mutations in exons 18 to 21, including mutations associated with specific drug resistance.1,3,35 The standard testing methodology for ALK gene rearrangements and ROS-1 gene fusions is fluorescence in situ hybridization, but IHC with high-performance ALK antibodies is also an approved ALK assay used for treatment decisions.1-3,35,36

As additional therapeutic targets are identified and new treatments are approved for patients with SqCLC, moving toward prioritizing tissue preservation for molecular testing as standard procedure will become a major practical change for institutions and physicians who manage patients with this NSCLC subtype. The implementation of newer technologies, such as NGS, might assist in addressing the challenges associated with an increased need for performing molecular testing on small biopsy samples in SqCLC and improve turnaround times for molecular testing (Table 1).37-43 The current reality is, however, that the lack of genomic targets and approved therapies in SqCLC means that relatively few cases are subjected to molecular screening. Hence, tissue availability for PD-L1 IHC, for example, is therefore less challenging than for adenocarcinoma.

Next-Generation Sequencing

Next-generation sequencing technologies are high-throughput methods that allow for the parallel sequencing of multiple targeted genomic regions and include whole genome or exome capture sequencing (DNA-based sequencing platform), whole or targeted transcriptome sequencing (RNA-based sequencing platform), and epigenetic profiling.44 (Table 1). The potential for increased clinical use of NGS is supported by the recent validation of an NGS-based framework as the primary molecular testing method in a large, prospective clinical trial with patients with advanced NSCLC.45 Because approved targeted treatments are limited for patients with SqCLC, routine molecular testing using NGS is not currently required. However, the use of NGS has facilitated the screening of patients for enrollment in ongoing clinical trials aimed at identifying new actionable molecular targets and evaluating novel targeted therapies that might benefit this patient population.37-40 NGS was also recently used in a study that showed that patients who had ErbB—mutation-positive SqCLC had higher progression-free survival (PFS) and overall survival when treated with afatinib than when treated with erlotinib, or in patients who had ErbB—mutation-negative disease.46 These findings, in addition to the recent US Food and Drug Administration (FDA) approval of an NGS-based companion test to identify patients with NSCLC eligible for treatment with crizotinib, gefitinib, and dabrafenib combined with trametinib,47 support the clinical application of NGS for molecular testing in NSCLC, including SqCLC.

Furthermore, use of NGS for molecular testing in NSCLC might become routine with the potential role of tumor mutational burden (TMB) to assess the likelihood of benefit from immunotherapy. In a study that included 2 independent cohorts, patients with NSCLC whose tumors had a high TMB, or nonsynonymous mutation burden, experienced greater clinical benefit from treatment with the PD-1 inhibitor pembrolizumab than patients whose tumors had a lower mutation load.48 More recently, results from a subset analysis of a phase III clinical trial showed that patients with NSCLC whose tumors had a high TMB and PD-L1 expression using IHC had a higher clinical response to first-line treatment with the PD-1 inhibitor nivolumab than with chemotherapy.49

Despite the applicability of NGS for molecular testing in NSCLC, and potentially for SqCLC as more targeted treatments
become available, several drawbacks need to be addressed before it is routinely implemented in clinical practice. The implementation of NGS into regulatory and standard diagnostic pathways might be negatively affected by the multiple proprietary NGS variant databases, the use of different methodologies (eg, sequencing of nonamplified genome vs. amplicons), the inconsistent concordance between different biopsy types such as liquid biopsies and matched tissue biopsies, and the very large volume of complex bioinformatics data that require analysis. Another potential drawback of NGS is the lack of uniform policy for supporting, covering, or reimbursing the use of NGS comprehensive molecular testing, presenting additional challenges to its implementation in clinical practice. Furthermore, many of the NGS platforms currently used in the clinical setting are amplicon-based, which do not detect gene fusions or rearrangements, unlike newer platforms such as Archer (ArcherDX, Inc, Boulder, CO), FoundationOne (Foundation Medicine, Cambridge, MA), and NovaSeq (Illumina, Eindhoven, The Netherlands). Last, the limited information currently available on the applicability of NGS for biomarker testing relating to immunotherapies will further affect its adoption for molecular testing for SqCLC.

Analysis of Circulating-Tumor DNA (Liquid Biopsies)

Liquid biopsies are performed on blood samples and can be used to assess circulating-tumor cells, circulating-tumor DNA, circulating cell-free DNA, and exosomes for tumor-associated genetic and molecular alterations through several approaches. The use of blood samples for liquid biopsies offers several potential advantages over tissue biopsy testing, including quick and noninvasive sample retrieval, faster testing turnaround times, and the potential for monitoring responses and resistance to treatment.

Furthermore, NSCLC tumors are highly heterogeneous and the ability to assess circulating-tumor cells, circulating-tumor DNA, circulating cell-free DNA, and exosomes that derive from a patient’s whole tumor or tumors allows for the detection of intra- and intertumor heterogeneity. In 2016, the FDA approved a companion diagnostic test for the detection of exon 19 deletions or exon 21 substitution mutations in EGFR from liquid biopsies to identify patients with NSCLC who were eligible for treatment with erlotinib. The indication for the companion test was subsequently extended to include the detection of EGFR T790M mutations from liquid biopsies to identify tyrosine kinase inhibitor-resistant patients eligible for treatment with osimertinib. Despite recent advances, however, the remaining technical challenges, including inconsistent concordance compared with tissue, will need to be overcome before the implementation of liquid biopsies into practice (Table 1).

Overall, a number of new technologies are becoming available for molecular testing and might assist in addressing some of the issues that will arise from an increased need for molecular testing in SqCLC in the near future. Validating these methodologies and using external quality assurance programs will be essential to ensuring accurate and timely results to guide treatment for patients.

Effect of New Treatments on Molecular and Immune Testing in SqCLC

Targeting genetic abnormalities in SqCLC remains a research aim; however, the molecular profile of SqCLC is complex and

<table>
<thead>
<tr>
<th>Technology</th>
<th>Single-Gene Testing</th>
<th>NGS</th>
<th>Liquid Biopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>● Targeted gene testing using Sanger DNA sequencing, RT-PCR, FISH, and IHC</td>
<td>● High-throughput genetic profiling for decision-making in individual patients</td>
<td>● Analysis of circulating cell-free DNA from plasma via quick and noninvasive retrieval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Includes whole genome or exome capture sequencing of DNA, whole or targeted transcriptome sequencing of RNA, and epigenetic profiling</td>
<td>● Method for potentially monitoring responses and resistance to treatment</td>
</tr>
<tr>
<td>Advantages for SqCLC</td>
<td>● Current approach for decision-making in individual patients if it can be performed in the benchmark turnaround time for results</td>
<td>● Allows for the sparing of limited SqCLC tumor tissue for testing</td>
<td>● Might allow for an initial diagnosis of patients who might not be able to undergo a biopsy because of advanced disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Expands testing beyond currently known biomarkers</td>
<td>● Analyzes circulating-tumor cells, circulating-tumor DNA, circulating cell-free DNA, and exomes, which might help overcome sampling and tumor heterogeneity</td>
</tr>
<tr>
<td>Limitations for SqCLC</td>
<td>● Tissue samples are often inadequate for all required testing, requiring greater tissue prioritization</td>
<td>● Multiple proprietary databases negatively affect implementation into regulatory and standard diagnostic pathways</td>
<td>● Testing of circulating tumor cells is not yet optimized for use with NGS and other less sensitive platforms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Potential issues with reimbursement might affect implementation of comprehensive molecular testing into clinical practice</td>
<td>● Technical challenges remain to validate and implement for use in clinical practice</td>
</tr>
</tbody>
</table>

Abbreviations: FISH = fluorescent in situ hybridization; IHC = immunohistochemistry; NGS = next-generation sequencing; RT-PCR = reverse transcription polymerase chain reaction; SqCLC = squamous-cell lung cancer.
SqCLC tumors have a high mutation load. Consequently, the profile of SqCLC is unlikely to offer many actionable molecular targets, because the dominant molecular changes are not addictive oncogenes. Indeed, this lack of identifiable oncogenic drivers in SqCLC has proven to be a challenge, and targeting single genetic alterations seems to achieve only modest clinical benefits in advanced SqCLC.58-63

Conversely, the elucidation of how tumor cells use various complex and overlapping mechanisms to evade the immune system has led to an increased focus on immuno-oncology, particularly the PD-1/PD-L1 axis. Immunotherapy with anti–PD-1/PD-L1 antibodies now provides an important alternative to chemotherapy for SqCLC.65-66 The emergence of immunotherapy for the treatment of patients with advanced SqCLC has been transformative and will further affect the future of molecular and immune testing by leading to changes in the way genomic alterations are explored in SqCLC.

Because of the challenges in developing targeted therapies for advanced SqCLC previously noted, novel study designs have been developed to evaluate additional potential targeted treatments for advanced SqCLC and, most recently, nonsquamous NSCLC. For example, the Lung-MAP (Lung Cancer Master Protocol) study (Southwest Oncology Group S1400) seeks to identify potentially actionable molecular alterations in the second-line advanced SqCLC setting through the comprehensive screening of patients via an NGS platform.37,69 The NGS platform used in Lung-MAP detects base substitutions, short insertions and deletions, copy number alterations, and gene fusions across 287 cancer-related genes (Foundation Medicine).70 The rapid turnaround of results from the NGS screening (ie, 10-14 days), which is critical for patients with advanced SqCLC, might be partly responsible for enabling patients to be prescreened with molecular testing before disease progression during or after first-line therapy, thus facilitating the efficient assignment of eligible patients to a substudy on the basis of the identification of biomarkers or to a nonmatch substudy in which they receive immunotherapy. The testing approach of the Lung-MAP study might affect how new targeted agents are developed for SqCLC and nonsquamous NSCLC and, consequently, might influence the implementation of additional molecular testing in practice.

Recently, 3 Lung-MAP phase II substudies that included the fibroblast growth factor receptor inhibitor AZD4547, the cyclin-dependent kinase 4/6 inhibitor palbociclib, and the phosphoinositide 3-kinase inhibitor taselisib failed to meet their primary end points in their respective biomarker-enriched cohorts of patients with SqCLC.71-73 Nonetheless, the substudies served to catalog the array of diverse mutations present in these cancer-related genes among patients with SqCLC. On a rolling basis, new Lung-MAP substudies continue to be incorporated as new targeted therapies with actionable molecular targets become available.

Immune Biomarker Testing for Immunotherapy Treatments

Immune testing for checkpoint inhibitor PD-L1 protein expression as a predictive biomarker for response to anti–PD-1 or anti–PD-L1 antibodies is evolving. Testing for PD-L1 protein expression is performed using IHC, with each approved anti–PD-L1 immunotherapy having a different companion/complementary PD-L1 IHC assay.74-79 The anti–PD-1 agent pembrolizumab is approved for first-line treatment of patients with advanced NSCLC, including SqCLC, in patients with high PD-L1 expression (tumor proportion score ≥ 50%),68,76,77 on the basis of a phase III, prospective, randomized clinical study showing superior efficacy and lower toxicity for pembrolizumab than for chemotherapy.68 Furthermore, second-line treatment of patients with advanced NSCLC with anti–PD-1 agents pembrolizumab and nivolumab and anti–PD-L1 agent atezolizumab have all shown superiority to docetaxel chemotherapy after initial platinum doublet chemotherapy in randomized phase III studies.65-67 The studies with nivolumab and atezolizumab included patients with any or no PD-L1 expression, whereas the study with pembrolizumab included only patients with a tumor proportion score of > 1%. However, the benefit of immunotherapy over chemotherapy increased with higher PD-L1 expression in each of these trials. Thus, PD-L1 testing at diagnosis for metastatic disease has been incorporated into guidelines such as the NCCN guidelines.3 The recently updated American Society of Clinical Oncology treatment guidelines state that the guidance starts from the point at which the results of molecular and PD-L1 testing are known; however, reviewing the molecular testing literature is beyond the scope of the guideline.80

The existence of multiple distinct diagnostic assays for determining PD-L1 expression to guide treatment with each anti–PD-1/PD-L1 antibody constitutes a barrier to routine implementation of PD-L1 testing in clinical practice because of the impracticality of conducting multiple assays for the same protein. Consequently, there is great interest in establishing whether these assays provide comparable results for PD-L1 expression and could be used interchangeably in laboratories. Recently, comparison studies between the multiple PD-L1 assays reported a high degree of agreement between most assays.81-83 However, interchanging the assays and PD-L1 expression cutoff values used for the different anti–PD-1/PD-L1 antibodies led to a misclassified PD-L1 status for some patients, highlighting the need for standardization.82 Validated cutoffs are a function of drug activity and should remain allied to the drug/indication relevant to the patient and not allied to the assay.

A further need for standardization of PD-L1 testing relates to the reporting of PD-L1 expression by pathologists. Identifying the subset of patients with NSCLC who will benefit the most from therapy with anti–PD-1/PD-L1 antibodies can be challenging, because of the diversity of PD-L1 expression levels used to stratify patients in clinical studies for different anti–PD-1/PD-L1 antibodies.49,66,68 Therefore, standardized pathology reporting for PD-L1 expression using a numeric value rather than stating PD-L1 positivity/negativity is mandatory for the treating oncologist.

More recently, a randomized phase II trial comparing pemetrexed and carboplatin used with pembrolizumab with pemetrexed and carboplatin in patients with nonsquamous NSCLC showed superior results with respect to response rate and PFS for the combination with pembrolizumab.84 Although the number of patients involved was small, there was some evidence that more patients with a PD-L1 tumor proportion score of ≥ 50% achieved an objective response with pembrolizumab with chemotherapy (80%; n = 16) compared
with patients with a tumor proportion score of 1% to 49% (26%; n = 5). Although this study did not include patients with SqCLC, several randomized phase III trials in the first-line setting comparing treatment with anti–PD-1 and anti–PD-L1 checkpoint inhibitors alone or in combination with anti-cytotoxic T–lymphocyte-associated protein 4 inhibitors and trials comparing chemotherapy alone or in combination with checkpoint inhibitors are currently ongoing. The results of these trials will undoubtedly determine the role of immune testing for PD-L1 protein expression at diagnosis, depending on where the role of PD-L1 expression before chemotherapy/radiotherapy is assessed. In several ongoing studies. At present, assessment of PD-L1 expression before chemotherapy/radiotherapy is standard and not part of routine management. However, recent retrospective studies showing that high TMB predicted favorable outcomes for checkpoint inhibitor therapy and that the combination of TMB with PD-L1 expression levels was superior to either marker alone\(^{48}\) support the implementation of TMB for use as a biomarker in the future.

Discussion: The Future for Molecular and Immune Testing in SqCLC

The molecular and immune testing landscape for SqCLC is likely to change rapidly over the next several years because of the emergence of immunotherapies such as anti–PD-L1 and anti–PD-1 antibodies and novel targeted therapies for advanced SqCLC. Indeed, the need to test for PD-L1 expression levels before prescribing pembrolizumab as first-line therapy for advanced NSCLC, including SqCLC, has already meant that institutions are beginning to implement this test as part of standard practice. In some instances, this is occurring “reflexively,” without requiring additional orders. Therefore, integration of new molecular and immune testing into standard diagnostic and treatment algorithms and guidelines for advanced SqCLC will become essential to ensuring that patients receive appropriate and timely treatment.

Initially, the use of NGS for molecular testing in SqCLC is more likely to be adopted over other testing platforms because of features such as tumor tissue sample optimization, fast turnaround, and comprehensive genomic testing. The use of NGS testing might further expand as the significance of TMB as a biomarker for response to immunotherapy becomes better understood. However, analyses on value (in clinical trials) and the cost of increased screening and the use of comprehensive technology platforms that test for more than standard genetic alterations with approved targeted therapies will be necessary for these platforms to be widely accepted among payers and regulators. Last, as molecular testing for SqCLC evolves, greater education for patients will be needed. Improved patient communication will help patients understand the need for, timing of, eligibility for, and results from molecular tests and how these results might affect their treatment options.

Conclusion

The workload for pathologists will increase because of increased requests for genomic and proteomic profiles in SqCLC. The establishment of multidisciplinary teams and best practices for institutions to accommodate the need for, and to meet benchmark timelines for, molecular and immune biomarker testing for NSCLC, including SqCLC, is recommended. Furthermore, as new therapeutic targets are identified for SqCLC, standardized pathology reporting of new genomic and proteomic test results will play an important role in ensuring that accurate, concise, and appropriate information is available for clinicians to guide treatment decisions.
Acknowledgments
The authors thank Charlene Rivera, PhD, and Gail Rickard, PhD, at Complete HealthVizion for assistance with writing and revising the draft manuscript on the basis of detailed feedback from all authors. Primary responsibility for opinions, conclusions, and interpretation of data lies with the authors, and all authors approved the final version of manuscript submitted for publication.

Disclosures
The concepts addressed in this article were originally discussed at a meeting convened by Eli Lilly and Company that discussed topics for physician and patient education on SqCLC for which participants, including some of the authors on this publication, received an honorarium. The authors received no payment in relation to the development of this publication, which was developed separately from the meeting. Medical writing assistance was funded by Eli Lilly and Company. Dr Hirsch has acted as a consultant/advisor to Bristol-Myers Squibb, Lilly, Pfizer, Merck, Genentech, and has received research funding from Bristol-Myers Squibb, Amgen, and Lilly/ImClone. Dr Kerr reports lecture fees and/or consultancy fees from AstraZeneca, Bristol-Myers Squibb, Boehringer Ingelheim, Lilly, Merck Sharp & Dohme, Merck Serono, Novartis, Pfizer, Roche, and Roche Diagnostics. Dr Bunn has received personal fees from Lilly, AstraZeneca, Bristol-Myers Squibb, Daiichi Sankyo, Eisai, Merck, Roche/Genentech, Novartis, Pfizer, and Clovis. Dr Obasaju is an employee of Lilly. Dr Pérol has acted as a consultant/advisor to AstraZeneca, Boehringer Ingelheim, Lilly, and Roche, and received nonfinancial support from Roche. Dr Bonomi has acted as a consultant/advisor to Lilly, has received honoraria from, and acted as a consultant/advisor to, AstraZeneca, Bristol-Myers Squibb, and Merck, and has received honoraria from Celgene, Pfizer, and Roche Genentech for safety/data monitoring committees. Dr Bradley has received grants from ViewRay and Mevion Medical Systems, has acted as an advisor to ViewRay and Varian, and has received honoraria from AstraZeneca. Dr Gandara has acted as a consultant/advisor to Lilly and Merck. Dr Jett is Chief Medical Officer of Oncimmune, LLC. Dr Langer has received honoraria from and, acted as a consultant/advisor to, Ariad, Boehringer Ingelheim, Celgene, Clovis, Lilly, Merck, and Roche/Genentech. Dr Novello has participated in speaker bureaus for Boehringer Ingelheim, Merck, AstraZeneca, Bristol-Myers Squibb, and Roche. Dr Paz-Ares has received personal fees from AstraZeneca, Bristol-Myers Squibb, Clovis, Lilly, Roche, Novartis, Merck, Clovis Oncology, Amgen, and Pfizer. Dr Ramalingam has acted as a consultant/advisor to Amgen, AbbVie, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, Genentech, Lilly, and Novartis. Dr Reck has acted as a consultant/advisor to, and has participated in speaker bureaus for, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Lilly, Merck, Merck Sharp & Dohme, Pfizer, F. Hoffmann-La Roche, and Celgene. Dr Reynold has received personal fees from Lilly, Genentech, Boehringer Ingelheim, AstraZeneca, and Celgene. Dr Smit has received research grants from AstraZeneca, Bristol-Myers Squibb, Roche, and Genentech, and has served as a consultant/advisor for Lilly, AstraZeneca, Bristol-Myers Squibb, Bayer, Merck Sharp & Dohme, Pfizer, Novartis, and Roche. Dr Socinski has acted as a consultant/advisor to Lilly. Dr Stinchcombe has acted as a consultant for AstraZeneca, Takeda, and Novartis, and has received research funding from Takeda, Genentech, and Bristol-Myers Squibb. Dr Vansteenkiste has received research funding from AstraZeneca and Merck Sharp & Dohme, has acted as an advisor to Apotex, AstraZeneca, Boehringer Ingelheim, Lilly, Merck Sharp & Dohme, and Novartis, and has been a lecturer for AstraZeneca, Lilly, Merck Sharp & Dohme, and Novartis. Dr Wakelee has acted as a consultant/advisor to Novartis, ACEA, Pfizer, and Peregrine, and has received research funding from AstraZeneca, Bristol-Myers Squibb, Celgene, Lilly, MedImmune, Novartis, Pfizer, Roche/Genentech, Gilead, and Xcovery. Dr Thatcher has received personal fees from Amgen, Celgene, OncoGenex, AstraZeneca, Roche/Genentech, and Otsuka, and has acted as a consultant/advisor to Lilly. The remaining authors have stated that they have no conflicts of interest.

References
Molecular Testing in Squamous-Cell Lung Cancer

28. MKERST (treatment) [prescribing information]. East Hanover, NJ: Novartis; 2017.

79. TECENTRIQ (atezolizumab) [prescribing information]. Genentech Inc; 2016.