2019

Comparative evaluation of enteric bacterial culture and a molecular multiplex syndromic panel in children with acute gastroenteritis

Thomas Kellner
University of Alberta

Brandon Parsons
University of Alberta

Linda Chui
University of Alberta

Byron M. Berenger
Alberta Public Laboratories

Jianling Xie
University of Calgary

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
[https://digitalcommons.wustl.edu/open_access_pubs/](https://digitalcommons.wustl.edu/open_access_pubs/7858)

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Authors
Comparative Evaluation of Enteric Bacterial Culture and a Molecular Multiplex Syndromic Panel in Children with Acute Gastroenteritis

Thomas Kellner,a Brendon Parsons,h,c Linda Chui,h,c Byron M. Berenger,d,e,f Jianling Xie,g Carey-Ann D. Burnham,h Phillip I. Tarr,i Bonita E. Lee,j Alberto Nettel-Aguirre,k,l,m Jonas Szelewicki,h,c Otto G. Vanderkooi,n,o,p,q Xiao-Li Pang,b,c Nathan Zelyas,s,z Stephen B. Freedman,t,u on behalf of the Alberta Provincial Pediatric Enteric Infection Team (APPETITE)

ABSTRACT Although enteric multianalyte syndromic panels are increasingly employed, direct comparisons with traditional methods and the inclusion of host phenotype correlations are limited. Luminox xTAG gastrointestinal pathogen panel (GPP) and culture results are highly concordant. However, phenotypic and microbiological confirmatory testing raises concerns regarding the accuracy of the GPP, especially for Salmonella spp. A total of 3,089 children with gastroenteritis submitted stool specimens, rectal swab specimens, and clinical data. The primary outcome was bacterial pathogen detection agreement for shared targets between culture and the Luminox xTAG GPP. Secondary analyses included phenotype assessment, additional testing of GPP-negative/culture-positive isolate suspensions with the GPP, and in-house and commercial confirmatory nucleic acid testing of GPP-positive/culture-negative extracts. The overall percent agreement between technologies was >99% for each pathogen. Salmonella spp. were detected in specimens from 64 participants: 12 (19%) by culture only, 9 (14%) by GPP only, and 43 (67%) by both techniques. Positive percent agreement for Salmonella spp. was 78.2% (95% confidence interval [CI], 64.6%, 87.8%). Isolate suspensions from the 12 participants with specimens GPP negative/culture positive for Salmonella tested positive by GPP. Speci-
mens GPP positive/culture negative for *Salmonella* originated in younger children with less diarrhea and more vomiting. GPP-positive/culture-negative specimen extracts tested positive using additional assays for 0/2 *Campylobacter*-positive specimens, 0/4 *Escherichia coli* O157-positive specimens, 0/9 *Salmonella*-positive specimens, and 2/3 *Shigella*-positive specimens. For both rectal swab and stool samples, the median cycle threshold (C_\text{T}) values, determined using quantitative PCR, were higher for GPP-negative/culture-positive samples than for GPP-positive/culture-positive samples (for rectal swabs, 36.9 [interquartile range (IQR), 33.7, 37.1] versus 30.0 [IQR, 26.2, 33.2], respectively \(P = 0.002 \); for stool samples, 36.9 [IQR, 33.7, 37.1] versus 29.0 [IQR, 24.8, 30.8], respectively \(P = 0.001 \)). GPP and culture have excellent overall agreement; however, for specific pathogens, GPP is less sensitive than culture and, notably, identifies samples false positive for *Salmonella* spp.

KEYWORDS culture, *Salmonella*, enteric bacteria, nucleic acid technology, transmissible gastroenteritis virus

MATERIALS AND METHODS

Population. This prospective cohort study was conducted as part of the Alberta Provincial Pediatric EnTeric Infection TEam (APPETITE) project (16). Eligible children were enrolled through the Alberta Children’s Hospital (Calgary, AB, Canada) and Stollery Children’s Hospital (Edmonton, AB, Canada) emergency departments (EDs) and a provincial nursing triage telephone advice line (Health Link) (17).

Eligible participants were <18 years of age and had had ≥3 episodes of vomiting and/or diarrhea in the preceding 24 h and <7 days of symptoms. Children were excluded if they were enrolled in the previous 14 days, unable to participate in follow-up, had significant psychiatric comorbidities or neutropenia, or were critically ill. Children recruited through Health Link did not require medical attention, and supportive care at home was recommended. Approval was granted by the University of Calgary and University of Alberta research ethics boards. Caregivers provided informed consent; assent was obtained when appropriate.

Outcome measures. The primary outcome was agreement, measured as overall percent agreement, positive percent agreement (PPA), and Cohen’s \(\kappa \), between stool bacterial culture and the GPP for bacterial pathogens sought by both detection methods: *Campylobacter* spp., *Escherichia coli* O157, *Salmonella* spp., and *Shigella* spp. *Yersinia enterocolitica* was not included because of negligible detection rates.

Secondary outcomes focused on *Salmonella* spp. and consisted of a comparison of the clinical phenotypes of patients with concordant and discordant results and three confirmatory tests. First, GPP-negative/culture-positive isolates were tested using the GPP. Second, an in-house real-time quantitative PCR (RT-qPCR) assay was performed on nucleic acid extracts of specimens GPP positive/culture positive and GPP negative/culture positive for *Salmonella* spp. to confirm the initial concordant result and to evaluate the relationship between the cycle threshold (C_\text{T}) value and pathogen identification. Third, GPP-positive/culture-negative specimens were tested with the in-house RT-qPCR and a different commercial assay (the Prodesse ProGastro SCSS assay; Hologic Inc., San Diego, CA) (18) on a SmartCycler...
Specimen acquisition. Two rectal swab specimens were obtained from each ED participant (FLOQSwab; Copan Italia, Brescia, Italy) (19); one was placed in 2 ml of modified Cary-Blair transport medium and used for bacterial culture, and the other was placed into a sterile tube without medium and tested (off-label) using the GPP. Stool samples were collected in sterile containers (V302-F; Starplex Scientific Inc., ON, Canada). If they were not provided prior to discharge, stool samples were collected by the parents at home and placed in the same sterile containers described above, which were retrieved by a courier service.

Health Link participants received specimen collection kits by courier. Specimens were collected per ED protocols and were returned to the clinical microbiology laboratory by a study-funded courier service within 12 h of collection. All specimens were placed in coolers with ice packs while in transit to the laboratory. Bacterial cultures were inoculated per Public Health Laboratory (ProvLab) protocols as soon as possible following specimen arrival, after which both the rectal swabs and stool specimens were stored at −80°C until molecular testing was performed.

Specimen processing. (i) Culture. The FLOQSwab rectal swab specimens were vortexed for 30 s, and 100 μl of transport medium was transferred onto MacConkey agar with crystal violet (Daldyn Biologicals, Calgary, AB, Canada), sheep blood agar (Oxoid, Thermo Fisher Scientific, Waltham, MA, USA), Hekton agar (Daldyn Biologicals, Calgary, AB, Canada), cefsulodin, irgasan, and novobiocin agar (Daldyn Biologicals, Calgary, AB, Canada), CHROMagar O157 with 2.5 mg/liter potassium tellurite (CHROMagar, Paris, France), and Campylobacter blood-selective agar (Daldyn Biologicals, Calgary, AB, Canada) plates. Overnight enrichment was performed by adding ~200 μl of bulk stool to mannitol selenite broth followed by culture on Salmonella-Shigella (Daldyn Biologicals, Calgary, AB, Canada) and Wilson-Blair (bioMérieux, Marcy l’Etoile, France) agars. The colonies were incubated microaerobically (in 6.0% O2, 7.1% CO2, 3.6% H2, and 83.3% N2 at 42°C for up to 72 h); all other media were incubated in atmospheric oxygen (35°C, 24 h). A quantity of stool samples of <1 g was considered insufficient and not subjected to culture. Identification of isolates was performed per routine laboratory confirmation protocols using an API 20E system (bioMérieux Inc., USA) in ProvLab, Calgary, AB, Canada, while a Vitek MS system (bioMérieux, St-Laurent, QC, Canada) and supplemental biochemical methods were used in ProvLab, Edmonton, AB, Canada. Salmonella serotyping was performed using the Check & Trace Salmonella assay (Check-Points, Netherlands) (20). All positive cultures were skimmed and frozen at −80°C.

(ii) Molecular diagnostics. The GPP is a qualitative multiplex molecular-based syndromic panel that identifies nine bacterial targets (Campylobacter spp., Clostridioides [formerly Clostridium] difficile toxin A/B, E. coli O157, Shiga toxin-producing E. coli [STEC], and stx, Salmonella spp., Shigella spp., Vibrio cholerae, Yersinia spp.) (8, 21). GPP testing was performed at a single site (ProvLab, Edmonton, AB, Canada). Immediately before nucleic acid extraction, stools were thawed and aliquots were made, and the aliquots were then refrozen at −80°C. Rectal swab samples remained frozen until extraction. Samples were batch tested two to three times a week, depending on specimen availability.

The FLOQSwab rectal swab specimens were vortexed in 500 μl of NucliSENS lysis buffer, and 300 μl of this lysate was added to 700 μl of lysis buffer in Bertin SK38 solid grinding lysis bead tubes with 10 μl of bacteriophage MS2 (each from Luminex Molecular Diagnostics, Toronto, ON, Canada). Similarly, 100 to 150 mg or 100 μl of solid or liquid stool, respectively, was suspended in a final volume of 1 ml of lysis buffer. Two hundred microliters of prepared lysates was extracted using a NucliSENS easyMAG system (bioMérieux, Marcy l’Etoile, France). Total nucleic acids were eluted in a volume of 70 μl and tested per the recommendations for the xTAG GPP kit. All extracts were stored at −80°C until confirmatory testing.

Confirmation testing. (i) Testing of GPP-negative/culture-positive Salmonella isolates. Salmonella species isolates were cultured overnight (37°C) on sheep blood agar, and a single colony was transferred into Bertin SK38 tubes containing 1 ml of NucliSENS lysis buffer. Lysis and extraction were performed per the recommendations for the testing of stool by the xTAG GPP.

We also performed RT-qPCR using a TaqMan chemistry-based quantitative PCR (qPCR) targeting a conserved region of the Salmonella invA gene. The forward primer (TCGCGGTACTTGAATTTAC) and reverse primer (GAAGTTGCAGAATTTC), and dual-quenched probe (FAM-CGCCATCGG/ZEN/CTCAATCAAG A-lowa Black FQ; where 6-FAM is 6-carboxyfluorescein) (Integrated DNA Technologies [IDT], Coralville, IA, USA) were designed using Beacon Designer (version 8.20) software (Premier Biosoft, Palo Alto, CA, USA). Five-microliter nucleic acid extracts were used in a 20-μl total qPCR volume with 2× PrimeTime gene expression master mix (IDT, Coralville, IA, USA) with a 0.222 μM final probe concentration and a 0.333 μM final primer concentration. A fast cycling protocol with an initial 95°C polymerase activation step for 3 min, followed by 40 cycles of 95°C for 5 s and 60°C for 30 s, was performed on an Applied Biosystems 7500 Fast instrument. Positive controls with DNA extracted from Salmo...
As described above, we performed RT-qPCR to evaluate specimens GPP positive/culture negative for Salmonella spp. We performed a similar evaluation for Shigella spp., STEC, and E. coli O157. The primers and probes used are described in Appendix S1 in the supplemental material.

Statistical analysis. Test results were categorized as positive or negative, with no indeterminant readings. We did not differentiate between specimen types because rectal swabs have diagnostic capabilities similar to those of stool samples (19). Only participants whose specimens underwent culture and GPP testing were analyzed.

Overall percent agreement between the GPP and bacterial culture was determined for the pathogens of interest (22). For assessing positive response rates, PPA was calculated as \(\frac{A}{A + C} \times 100\% \), where \(A \) is the number of specimens with concordant positive results and \(C \) is the number of specimens with GPP-negative/culture-positive results (22). PPA and overall percent agreement were chosen over sensitivity and specificity per U.S. Food and Drug Administration guidelines when evaluating diagnostic tests in the absence of a gold standard (22). Cohen’s \(\kappa \) value was calculated to measure the extent of agreement (23). Clinical characteristics were compared using a chi-square test and the Kruskal-Wallis H test, as appropriate. The Mann-Whitney U test was used to compare RT-qPCR CT values of the rectal swab and stool specimen groups GPP positive/culture positive and GPP negative/culture positive for Salmonella spp.

We did not use imputation because data from only seven participants were incomplete; we did include all available data from these participants in our analysis. SPSS (version 24.0; IBM Corp., Armonk, NY) was used to perform analyses. A single 2-tailed \(P \) value was used to assess differences among all three groups, and the significance level was set at 0.05.

RESULTS

Specimens from 3,089 (88.0%) of the 3,511 participants enrolled between 12 December 2014 and 31 March 2018 underwent GPP and bacterial culture (Fig. 1).
Ninety-one (3.0%) and 88 (2.9%) of these specimens, respectively, were positive for at least one of *Campylobacter* spp., *E. coli* O157, *Salmonella* spp., or *Shigella* spp.

Primary outcome. The overall percent agreement was >99% for each individual bacterial target and 98.9% (95% confidence interval [CI], 98.5%, 99.3%) for all targets combined (Table 1). PPA ranged from 78.2% for *Salmonella* spp. (95% CI, 64.6%, 87.8%) to 100% for *E. coli* O157 (95% CI, 51.7%, 100%). Overall, PPA was 83.0% (73/88; 95% CI, 73.1%, 89.8%). Cohen’s κ was 0.70 for *E. coli* O157, *Shigella* spp., and *Salmonella* spp. and almost perfect for *Campylobacter* spp. ($\kappa = 0.89$).

Secondary outcomes for *Salmonella.* The most frequently identified pathogen, *Salmonella* spp., was detected in 64 participants (Fig. 2). *Salmonella* spp. were detected in 80% (51/64) of submitted rectal swabs (positive results, $n = 5$ for GPP only, $n = 12$ for culture only, $n = 34$ for both) and 84% (43/51) of submitted stool specimens (positive results, $n = 7$ for GPP only, $n = 8$ for culture only, $n = 28$ for both). *Salmonella Enteritidis* accounted for 48% (31/64) of the *Salmonella* spp. identified by culture (Table 2). Sixty-seven percent (43/64) of the participants with *Salmonella* spp. detected in swab or stool produced concordant GPP and culture test results; 19% (12/64) were GPP negative/culture positive, and 14% (9/64) were GPP positive/culture negative. Rectal swabs and stool samples had similar detection rates for *Salmonella* spp., with the exception of GPP-positive/culture-negative specimens, where only 33% (3/9) of the rectal swabs but 88% (7/8) of the stool samples were positive (Table 3).

Participants in the group GPP positive/culture positive for *Salmonella* spp. were older (median age, 38 months [interquartile range {IQR}, 13, 63 months]) than those in the GPP-positive/culture-negative group (median age, 7 months [IQR, 5, 16 months]) (Table 4). The latter group of children had significantly more vomiting episodes in the 24 h before enrollment (median, 6 [IQR, 2, 13]) than those with concordant positive specimens (median, 1 [IQR, 0, 3]) or GPP-negative/culture-positive specimens (median, 1 [IQR, 0, 4]). All 43 GPP-positive/culture-positive specimens were provided by children who presented with diarrhea; only 44% (4/9) of GPP-positive/culture-negative children had had diarrhea prior to enrollment ($P < 0.001$). The maximum number of diarrheal episodes per 24-h period before enrollment was greater in children with specimens with concordant results (median, 10 [IQR, 7, 15]) than in children with GPP-positive/culture-negative specimens (median, 0 [IQR, 0, 9]) ($P = 0.002$).

Confirmatory testing. Five of 5 (100%) stool specimens and 8/8 (100%) rectal swab specimens GPP negative/culture positive for *Salmonella* isolates were positive by confirmatory testing by GPP (Fig. 2). *Salmonella* qPCR of GPP-negative/culture-positive extracts was positive for 4/12 (25%) rectal swab specimens and 1/5 (20%) stool specimens. Of the concordant GPP-positive/culture-positive specimens, 36/38 (94.7%) were confirmatory positive.

TABLE 1 PPA and overall percent agreement between the Luminex xTAG GPP and bacterial culture of stool and rectal swab specimens

<table>
<thead>
<tr>
<th>Bacterial targets</th>
<th>Luminex xTAG GPP result</th>
<th>No. of specimens with the following bacterial culture result:</th>
<th>Overall % agreement (95% CI)</th>
<th>Cohen’s κ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>PPA (95% CI)</td>
<td></td>
</tr>
<tr>
<td>Campylobacter spp.</td>
<td>Positive</td>
<td>20</td>
<td>2</td>
<td>87.0 (65.3, 96.6)</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>3</td>
<td>3,064</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli O157</td>
<td>Positive</td>
<td>6</td>
<td>4</td>
<td>100 (51.7, 100)</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>0</td>
<td>3,079</td>
<td></td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>Positive</td>
<td>43</td>
<td>9</td>
<td>78.2 (64.6, 87.8)</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>12</td>
<td>3,025</td>
<td></td>
</tr>
<tr>
<td>Shigella spp.</td>
<td>Positive</td>
<td>5</td>
<td>3</td>
<td>100 (46.3, 100)</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>0</td>
<td>3,081</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Positive</td>
<td>73</td>
<td>18</td>
<td>83.0 (73.1, 89.8)</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>15</td>
<td>2,983</td>
<td></td>
</tr>
</tbody>
</table>

The bacterial targets included in this table were identified by both the Luminex xTAG gastrointestinal pathogen panel (GPP) and bacterial culture.
stool samples and 39/43 (90.7%) rectal swab specimens were positive on qPCR, with median cycle threshold (CT) values being 29.0 (IQR, 24.8, 30.8) for stool and 30.0 (IQR, 26.2, 33.2) for rectal swabs (P/H11005 = 0.02 for the 32 paired specimens). Median CT values were higher for GPP-negative/culture-positive than for GPP-positive/culture-positive Salmonella rectal swab (36.9 [IQR, 33.7, 37.1] versus 30.0 [IQR, 26.2, 33.2]; P = 0.002) and stool specimen extract (36.9 [IQR, 33.7, 37.1] versus 29.0 [IQR, 24.8, 30.8]; P = 0.001).

Retesting of GPP-positive/culture-negative specimen extracts yielded the same results on both the Prodesse ProGastro SCSS and in-house qPCR assays (except for Campylobacter spp., for which in-house primers were not developed): 0/4 E. coli O157, 0/9 Salmonella species, and 2/3 Shigella species isolates were positive for the bacteria detected initially on the GPP. Both Campylobacter species-positive specimens were negative on commercial PCR testing (Table 5).

DISCUSSION

We found excellent overall agreement between the GPP and bacterial culture. For *Salmonella* spp., however, GPP-positive/culture-negative children differed significantly from those for whom the results were concordant. Confirmatory analyses demonstrated that GPP-positive/culture-negative specimens likely are false positive, while GPP-negative/culture-positive specimens reflect the inability of the assay to detect *Salmonella* spp. when small quantities of nucleic acid are present.

A meta-analysis comparing a variety of multiplex gastrointestinal panels with standard microbiology methods reported that PPA ranged from 68% when NAAT methods provide the benchmark to 93% when conventional methods are considered the gold standard (24). However, the high PPA obtained when conventional methods served as the benchmark was inconsistent across pathogens, a concern that we identified as it...
relates to Salmonella spp. A Vietnamese report identified a lack of specificity of Salmonella species detection using the GPP (5), potentially due to a high rate of Salmonella carriage (25) or amplification of DNA from non-Salmonella strains. In a U.S. multicenter study, 14% of Salmonella spp. detected by GPP could not be confirmed by gold standard methods (26).

Given that specimens GPP negative/culture positive for Salmonella had higher CT values than GPP-positive/culture-positive specimens, our data do not support the hypothesis that culture fails to detect pathogens because it is less sensitive. While prolonged storage under suboptimal conditions may permit nucleic acid degradation (27) and, hence, a lower yield on NAAT platforms, in our study, all samples were processed within 7 days of receipt and both aliquots and extracts were stored at -80°C at all times. This approach led to our finding a PPA of 78%, which is aligned with previous reports (27, 28). While the inability to detect some pathogens on the GPP could reflect inefficient nucleic acid extraction or inhibition, many of the same nucleic acid extracts yielded positive results with our in-house assay and the alternate platform. Our RT-qPCR results and our retesting of culture-positive Salmonella isolates on the GPP lead us to believe that the discrepancies represent a sensitivity threshold, with there

TABLE 2 Serotype analysis of Salmonella species-positive specimens on the Luminex xTAG GPP and bacterial culture

<table>
<thead>
<tr>
<th>Salmonella serovar</th>
<th>No. (%) of specimens with the following result:</th>
<th>Luminex xTAG GPP positive/culture negative</th>
<th>Luminex xTAG GPP negative/culture positive</th>
<th>Luminex xTAG GPP positive/culture positive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>9 (14.1)</td>
<td>12 (18.8)</td>
<td>43 (68.8)</td>
</tr>
</tbody>
</table>

TABLE 3 Comparison of rectal swab and stool specimen results for Salmonella spp. grouped by diagnostic testing approach

<table>
<thead>
<tr>
<th>Salmonella species-positive group</th>
<th>Specimen type</th>
<th>Luminex xTAG GPP positive</th>
<th>Culture positive</th>
<th>qPCR positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPP positive/culture positive</td>
<td>Stool</td>
<td>34/38 (89.5)</td>
<td>31/38 (81.6)</td>
<td>36/38 (94.7)</td>
</tr>
<tr>
<td></td>
<td>Rectal swab</td>
<td>36/43 (83.7)</td>
<td>38/43 (88.4)</td>
<td>39/43 (90.7)</td>
</tr>
<tr>
<td>GPP positive/culture negative</td>
<td>Stool</td>
<td>7/8 (87.5)</td>
<td>0/8 (0)</td>
<td>0/8 (0)</td>
</tr>
<tr>
<td></td>
<td>Rectal swab</td>
<td>3/9 (33.3)</td>
<td>0/9 (0)</td>
<td>0/9 (0)</td>
</tr>
<tr>
<td>GPP negative/culture positive</td>
<td>Stool</td>
<td>0/5 (0)</td>
<td>5/5 (100)</td>
<td>1/5 (20.0)</td>
</tr>
<tr>
<td></td>
<td>Rectal swab</td>
<td>0/12 (0)</td>
<td>8/12 (66.7)</td>
<td>4/12 (33.3)</td>
</tr>
</tbody>
</table>

*P < 0.05. No other comparisons achieved statistical significance.

GPP, gastrointestinal pathogen panel; qPCR, quantitative PCR.
Salmonella Contamination can be addressed by engineering or procedure modifications, and non-causes from a non-Salmonella spp., and Salmonella species amplification can be minimized by including corroborative loci. For Salmonella O157, the presence of conserved loci for intimin (\(eae\)) (30) and \(rfaE\) (31) increases confidence that Shiga toxin gene signal originates in a bona fide pathogen. Nonetheless, these findings being less target pathogen nucleic acid present in the GPP-negative/culture-positive group.

The clinical presentations of participants GPP positive/culture negative for Salmonella spp. were at variance with those of individuals with classic Salmonella infection (29). Retesting of these specimens using commercial and in-house assays provided negative results, indicating that the GPP results were likely false positive. All specimens GPP positive/culture negative for E. coli O157 were also negative when tested with an alternate commercial and in-house assay, suggesting an overall suboptimal specificity for these targets. Concerns regarding false positives due to cross-reactivity with commensal bacteria have also been reported with the BioFire FilmArray gastrointestinal panel (4). Other possible causes for false positives on the NAAT include cross-contamination, amplification of a target from a non-Salmonella strain, or detection of Salmonella spp. in a child who is a carrier. Contamination can be addressed by engineering or procedure modifications, and non-Salmonella species amplification can be minimized by including corroborative loci. For example, in the case of E. coli O157, the presence of conserved loci for intimin (\(eae\)) (30) and a component of the O157 side chain synthesis cluster (\(rfb\)) (31) increases confidence that a Shiga toxin gene signal originates in a bona fide pathogen. Nonetheless, these findings highlight the concern regarding false-positive results when a multiplex NAAT is employed.

TABLE 5 Analysis of specimens Luminex xTAG GPP positive/bacterial culture negative for Campylobacter spp., Escherichia coli O157, Salmonella spp., and Shigella spp. on commercial and in-house PCR assays

<table>
<thead>
<tr>
<th>Bacteria with positive test result on GPP</th>
<th>No. of specimens</th>
<th>Commercial assay retest result</th>
<th>In-house PCR result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter spp.</td>
<td>2</td>
<td>Negative</td>
<td>NA</td>
</tr>
<tr>
<td>Escherichia coli O157</td>
<td>4</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>9</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Shigella spp.</td>
<td>2</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Shigella spp.</td>
<td>1</td>
<td>Negative</td>
<td>Negative</td>
</tr>
</tbody>
</table>

\(^{4}\)NA, not applicable (our in-house assay did not include primers for Campylobacter spp.).
and the importance of considering such results with the clinical presentation and code-
tected pathogens in mind (3, 12).

Although we might be underpowered to detect problems with the identification of
E. coli O157 and *Shigella* spp. by the GPP, the panel identified all culture-positive
participants. The rapid identification of these two pathogens is of considerable value.
Detecting *E. coli* O157 infection would prompt the withholding or discontinuation of
antibiotics (32) and the reversal of dehydration using parenteral fluids (33–35); the
detection of *Shigella* would appropriately prompt antibiotic therapy (36, 37). Evidence
supporting this assertion was provided by a study of the BioFire FilmArray GI panel,
which reduced the time to initiation of antimicrobial therapy by 50 h and the time to
the discontinuation of therapy in STEC-infected children by 47 h (12).

Selenite enrichment broth was employed as part of our stool culture protocol to
enhance the identification of *Salmonella* spp. (38). By comparison, false-negative results
by NAAT may relate to technical issues, including nucleic acid extraction efficiency. Future
iterations of NAAT-based multianalyte syndromic panels should consider protocol modifi-
cations that enhance diagnostic accuracy, including alternative approaches to extraction,
modified amplification or cycling conditions, and the incorporation of additional pathogen
loci to reduce the number of panel-positive/culture-negative results.

Given our data, the existing literature, and the adjustments required for NAAT
assays, one needs to consider how postmarket monitoring of the performance of
multianalyte assays should be performed. Specifically, if laboratories abandon culture
detection of enteric pathogens in favor of multianalyte assays, there is little opportunity
to compare recovery rates between the two methodologies. Hence, the failure to detect
pathogens by multianalyte assays will go unverified. The U.S. Food and Drug Admin-
istration has postmarket surveillance mechanisms for drug safety and efficacy, espe-
cially for those drugs approved via accelerated pathways (39, 40), but no analogous
mechanism exists for diagnostic devices. Our findings urge continuing assessment of
the accuracy of multianalyte assays for bacterial enteric pathogens.

To our knowledge, this is the first study to compare GPP with bacterial culture
employing samples from an entirely pediatric population in a high-income country. It
is also the only study to incorporate the clinical phenotype into the interpretation of
discordant specimens. Our study nonetheless has limitations. Despite our large sample
size, we detected only 64 participants with *Salmonella* species-positive specimens, and
Campylobacter species-, STEC-, and *Shigella* species-positive specimens were even less
common. The low prevalence of bacterial enteropathogens has implications for our
reported percent agreement and \(\kappa \) calculations. Participants were recruited from only
two western Canadian cities, so our findings cannot be automatically generalized to
locations with a different epidemiology. We, unfortunately, do not have data to enable
calculation of the precise time interval between specimen receipt at the laboratory and
culture setup. It should also be noted that sampling error may have occurred due to the
small volume of nucleic acid extract used and that all specimens underwent a freeze-
thaw cycle; both of these operational elements could explain negative GPP and qPCR
results in the setting of low bacterial loads.

In conclusion, overall GPP results had excellent concordance with those of bacterial
culture, but the PPA was suboptimal for the shared bacterial targets. In particular,
Salmonella species identification with the GPP was prone to false positives and nega-
tives. These results have clinical and public health implications. While the GPP platform
and other NAAT assays have the potential to provide valuable and credible results, their
current accuracy requires additional validation before universal abandonment of culture
diagnostics. Careful consideration of the context of the illness in patients whose
stool tests yield positive results is required.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/JCM .00205-19.

SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.
ACKNOWLEDGMENTS

We thank the patients and their families for cooperating with our study; Bryanne Crago and Christina Ferrato (Public Health Laboratory [ProvLab], Alberta Public Laboratories, Calgary, AB, Canada), Judy Qui (Department of Laboratory Medicine and Pathology, University of Alberta), DynaLIFE Dx Diagnostic Laboratory Services, community laboratories, as well as Public Health Laboratory (ProvLab), Alberta Public Laboratories, Edmonton and Calgary, especially the bacteriology staff, for their assistance with receiving, handling, and processing specimens; the emergency department research nurses and PEMRAP at the Alberta Children’s Hospital for recruiting study participants; the emergency department bedside nurses for assisting with rectal swab performance; Nadia Dow and Manasi Rajagopal, as well as the research assistants, research nurses, and the Little Bit of Help research volunteer program, for their assistance with participant recruitment at the Stollery Children's Hospital; the nurses at Health Link who responded to calls from across the province for their assistance with participant recruitment; and Laurel Ryan for her role as a patient adviser. We extend special thanks to Marie Louie for building the connections that have made our endeavors possible. No compensation for the assistance of any aforementioned individuals was provided.

This work was supported by the Alberta Provincial Pediatric EnTeric Infection TEAM (APPETITE), which was funded by a grant from the Alberta Innovates-Health Solutions Team Collaborative Research Innovation Opportunity. APPETITE is also supported through partnership awards by the Alberta Children’s Hospital Research Institute (Calgary, AB, Canada) and the Women and Children’s Hospital Research Institute (Edmonton, AB, Canada). S.B.F. is supported by the Alberta Children’s Hospital Foundation Professorship in Child Health and Wellness. P.I.T. is also supported by grant number NIH P30DK052574 (ARAC Core, Digestive Diseases Research Core Center). The Pediatric Emergency Medicine Research Associate Program (PEMRAP) is supported by a grant from the Alberta Children’s Hospital Foundation. T.K. was supported by summer studentship grants from the Alberta Health Services Emergency Strategic Clinical Network and the Alberta Children’s Hospital Research Institute.

The APPETITE team receives financial support from Luminex Molecular Diagnostics, Austin, TX, USA, and bioMérieux Canada, Inc., St-Laurent, QC, Canada.

APPETITE collaborators include Samina Ali, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada, and Kimberley Simmonds, Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, and Alberta Ministry of Health, Edmonton, AB, Canada.

REFERENCES

ton, DC.

ton, DC.

festations of acute gastroenteritis in pediatric patients. Eur J Clin Micro-

34. Liu LJ, Yang YJ, Kuo PH, Wang SM, Liu CC. 2005. Diagnostic value of bacterial stool cultures and viral antigen tests based on clinical mani-
festations of acute gastroenteritis in pediatric patients. Eur J Clin Micro-

festations of acute gastroenteritis in pediatric patients. Eur J Clin Micro-