Supplementary Information For

“Mapping brain function during naturalistic viewing using high-density diffuse optical tomography”

Andrew K. Fishell,a,b Tracy M. Burns-Yocum,c Karla M. Bergonzid,e Adam T. Eggebrecht,b Joseph P. Culverb,fg

aWashington University School of Medicine, Division of Biology and Biomedical Sciences, St. Louis, USA
bWashington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, USA
cIndiana University, Department of Psychological and Brain Sciences, Bloomington, USA
dUniversity of Pennsylvania, Department of Anesthesia and Critical Care, Philadelphia, USA
eUniversity of Pennsylvania, Department of Physics, Philadelphia, USA
fWashington University, Department of Physics, St. Louis, USA
gWashington University, Department of Biomedical Engineering, St. Louis, USA

Correspondence:
Joseph P. Culver
Mallinckrodt Institute of Radiology
Washington University School of Medicine
Campus Box 8225
660 S. Euclid Ave
St. Louis, MO 63110
Email: culverj@wustl.edu

Contents

Supplementary Figures
Supplementary Figure 1: Measurement retention 2
Supplementary Figure 2: Inter-subject synchronization with all contrasts 3
Supplementary Figure 3: With and between session synchronization 5
Supplemental Figure 1 Measurement retention across all passive movie viewing runs. A: Box plots show the distributions for the number of measurements retained at the first four nearest-neighbor separations, with a mean of 642/644 NN1, 1034/1065 NN2, 368/440 NN3, and 339/848 NN4 measurements retained across all runs. B: Box plots show the percentage of measurements retained for the first four nearest-neighbor separations.
Supplemental Figure 2 Inter-subject synchronization assessed across all oxy-hemoglobin, deoxy-hemoglobin, and total hemoglobin contrasts.

A: Timeseries for all three contrasts from a seed region in temporal cortex (inset) during a five-minute subset of the passive movie viewing experiment.

B: The oxy-hemoglobin timeseries from the seed region during passive movie viewing in all 10 individual subjects (grey lines) and the group averaged oxy-hemoglobin response (red line).

C: The deoxy-hemoglobin timeseries from the seed region during passive movie viewing in all 10 individual subjects (grey lines) and the group averaged deoxy-hemoglobin response (blue line).

D: The total-hemoglobin timeseries from the seed region during passive movie viewing in all 10 individual subjects (grey lines) and the group averaged total-hemoglobin response (green line).

E: Group averaged spatial map of correlation coefficients for the inter-subject synchronization analysis performed using the oxy-hemoglobin contrast. Voxel values represent Fisher’s Z-transformed correlation coefficients.
F: Group averaged spatial map of correlation coefficients for the inter-subject synchronization analysis performed using the deoxy-hemoglobin contrast. G: Group averaged spatial map of correlation coefficients for the inter-subject synchronization analysis performed using the total hemoglobin contrast. H: Retinotopic mapping stimulus used for evaluation of hemoglobin spectroscopy in a subset of passive movie viewing participants (N = 5). I: Posterior view of the group-level block-averaged oxy-hemoglobin response, averaged over the shaded timepoints in Panel L. J: Posterior view of the group-level block-averaged deoxy-hemoglobin response, averaged over the shaded timepoints in Panel L. I: Posterior view of the group-level block-averaged total-hemoglobin response, averaged over the shaded timepoints in Panel L. L: Activation time traces from left visual cortex for the oxy-hemoglobin, deoxy-hemoglobin, and total hemoglobin contrasts.
Supplemental Figure 3 Intra-subject synchronization assessed separately for runs collected within the same session and runs collected across separate imaging sessions.

A: Map of Fisher z-transformed Pearson’s correlations for passive movie viewing runs within a single imaging session.

B: Map of Fisher z-transformed Pearson’s correlations for passive movie viewing runs across multiple imaging sessions.

C: Voxelwise distributions of Fisher z-transformed Pearson’s correlations for maps shown in A and B.