8-1-2019

Novel cell adhesion/migration pathways are predictive markers of HDAC inhibitor resistance in cutaneous T cell lymphoma

Jared M Andrews
Washington University School of Medicine in St. Louis

Jennifer A Schmidt
Washington University School of Medicine in St. Louis

Kenneth R Carson
Washington University School of Medicine in St. Louis

Amy C Musiek
Washington University School of Medicine in St. Louis

Neha Mehta-Shah
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Andrews, Jared M; Schmidt, Jennifer A; Carson, Kenneth R; Musiek, Amy C; Mehta-Shah, Neha; and Payton, Jacqueline E., "Novel cell adhesion/migration pathways are predictive markers of HDAC inhibitor resistance in cutaneous T cell lymphoma." EBioMedicine,. (2019).
https://digitalcommons.wustl.edu/open_access_pubs/8201

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Novel cell adhesion/migration pathways are predictive markers of HDAC inhibitor resistance in cutaneous T cell lymphoma

Jared M. Andrews a, Jennifer A. Schmidt a, Kenneth R. Carson b, Amy C. Musiek c, Neha Mehta-Shah b, Jacqueline E. Payton a,⁎

a Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
b Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
c Department of Pathology, Division of Dermatology, Washington University School of Medicine, St. Louis, MO, USA

Article history:
Received 20 June 2019
Received in revised form 18 July 2019
Accepted 20 July 2019
Available online 26 July 2019

Keywords:
Lymphoma
Epigenetics
Therapeutic resistance
Predictive biomarker

Abstract

Background: Treatment for Cutaneous T Cell Lymphoma (CTCL) is generally not curative. Therefore, selecting therapy that is effective and tolerable is critical to clinical decision-making. Histone deacetylase inhibitors (HDACi), epigenetic modifiers, are commonly used but effective in only ~30% of patients. There are no predictive markers of HDACi response and the CTCL histone acetylation landscape remains unmapped. We sought to identify pre-treatment molecular markers of resistance in CTCL that progressed on HDACi therapy.

Methods: Purified T cells from 39 pre/post-treatment peripheral blood samples and skin biopsies from 20 patients were subjected to RNA-seq and ChIP-seq for histone acetylation marks (H3K14/9 ac, H3K27ac). We correlated significant differences in histone acetylation with gene expression in HDACi-resistant/sensitive CTCL. We extended these findings in additional CTCL patient cohorts (RNA-seq, microarray) and using ELISA in matched CTCL patient plasma.

Findings: Resistant CTCL exhibited high levels of histone acetylation, which correlated with increased expression of 338 genes (FDR < 0.05), including some novel to CTCL: BIRC5 (anti-apoptotic); RRM2 (cell cycle); TXNDC5, GSTM1 (redox); and CXCR4, LAIR2 (cell adhesion/migration). Several of these, including LAIR2, were elevated pre-treatment in HDACi-resistant CTCL. In CTCL patient plasma (n = 6), LAIR2 protein was also elevated (p < 0.01) compared to controls.

Interpretation: This study is the first to connect genome-wide differences in chromatin acetylation and gene expression to HDACi-resistance in primary CTCL. Our results identify novel markers with high pre-treatment expression, such as LAIR2, as potential prognostic and/or predictors of HDACi-resistance in CTCL.

Funding: NIH:CA156690, CA188286; NCATS: WU-ICTS UL1 TR000448; Siteman Cancer Center: CA091842.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of non-Hodgkin lymphomas thought to derive from mature CD4+ skin-homing T lymphocytes [1]. Mycosis Fungoides (MF) and its leukemic variant, Sézary Syndrome (SS), are the most common subtypes of CTCL. Patients with MF/SS have a highly variable clinical course. While some with early stage disease do not progress beyond limited skin disease and do not have significant morbidity or mortality from MF/SS, others develop advanced stage disease characterized by more extensive skin involvement, skin tumors, and lymph node and peripheral blood involvement. Those with advanced stage MF/SS have a 5-year overall survival of only 20% [2,3]. Treatment for MF/SS is generally not curative, except for allogeneic stem cell transplant, which is a last resort. Therefore, selecting a therapy that is both effective and tolerable is a critical part of clinical decision making for treatment of MF/SS. Biologic agents, immunomodulators, targeted therapies, histone deacetylase inhibitors, and chemotherapy all have efficacy in some patients. However, except for CD30-targeted drugs, predictive biomarkers to guide choice of therapy do not exist for MF/SS [4].

Romidepsin and vorinostat, histone deacetylase inhibitors (HDACi), are two of the drugs FDA-approved for advanced MF/SS, underscoring the significance of histone modification in MF/SS pathogenesis and treatment. HDACs remove acetyl groups from lysine residues on histone proteins, causing condensation and decreased accessibility for transcription factors and other transcriptional machinery. HDACs also remove acetyl groups from non-histone proteins, including transcription factors. Thus, by broadly regulating transcription, HDACs modulate a wide range of cellular processes, including cell cycle and apoptosis,
However, the majority of these studies were performed in cell lines and it is not clear that the same processes drive resistance in patients with MF/SS.

To address these outstanding questions, we performed chromatin immunoprecipitation and sequencing (ChIP-seq) and transcriptome sequencing (RNA-seq) on purified malignant T cells from skin biopsies and peripheral blood from patients treated with HDACi. Our studies revealed significant differences in the histone acetylation of gene regulatory elements in HDACi-resistant versus -sensitive samples and we linked these to significant expression changes in apoptosis, cell cycle, cytokine/chemokine signaling, and cell migration pathways. We identified a number of genes not previously associated with MF/SS or with HDACi-resistance. Notably, some of these changes are detectable prior to HDACi therapy. One of these novel HDACi-resistance genes, LAIR2, encodes a secreted collagen receptor protein that is also significantly elevated in the plasma of patients with HDACi-resistant MF/SS. In summary, we report the first epigenome-wide map of chromatin acetylation in primary MF/SS and link significant differences in acetylation to gene expression in HDACi-resistant versus -sensitive samples. Our findings identify previously unrecognized mechanisms of HDACi resistance and define novel predictive markers as potential targets for therapeutic development.

2. Materials and methods

2.1. Sample collection

De-identified peripheral blood draws or skin punch biopsies were obtained from patients seen at the Washington University School of Medicine Cutaneous Lymphoma Clinic under IRB-approved protocols with patients providing informed consent. Peripheral blood was also drawn from healthy volunteers at WUSM with IRB approval.

2.2. PBMC isolation from primary skin samples

PBMCs were isolated from skin punches through mechanical separation and repeated flushing of the tissue with sort buffer (PBS, 1% FBS, 2 mM EDTA), followed by red blood cell lysis (155 mM NH₄Cl, 10 mM KHCO₃, 0.1 mM EDTA) for 10 min.

2.3. T cell isolation from peripheral blood samples

Primary peripheral blood samples were incubated with RosetteSep Human Monocyte (CD36) Depletion Cocktail for 15 min at room temperature, layered onto a Histopaque-1077 gradient, and centrifuged at 400g for 30 min with no brake. The interphase was collected and washed with 10 mL of sort buffer (PBS, 1% FBS, 2 mM EDTA), followed by red blood cell lysis (155 mM NH₄Cl, 10 mM KHCO₃, 0.1 mM EDTA) for 10 min. Cells were washed and resuspended in sort buffer. Malignant cell populations were isolated with the EasySep Human CD4 Positive Selection Kit according to the manufacturer's instructions or through FACS on a Sony iCyT Synergy SY3200 after staining with CD4 (Miltenyi Biotec Cat# 130–092-373, RRID:AB_871684), CD7 (Miltenyi Biotec Cat# 130–105-842, RRID:AB_2659107), and/or CD26 (Miltenyi Biotec Cat# 130–093-441, RRID:AB_1103210) fluorochrome conjugated antibodies.

2.4. Cell culture

HH (ATCC Cat# CRL-2105, RRID:CVCL_1280), HUT78 (ATCC Cat# CRM-TIB-161, RRID:CVCL_0337), and Jurkat (ATCC Cat# TIB-152, RRID:CVCL_0367) cell lines were acquired from ATCC. HH and Jurkat cells were cultured in RPMI (Gibco) media supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin. HUT78 cells were cultured in IMDM (Gibco) media supplemented with 20% fetal bovine serum and 1% penicillin-streptomycin. Primary T cells were cultured
in IMDM media supplemented with 20% fetal bovine serum and 1% penicillin-streptomycin. All cells were grown at 37 °C with 5% CO2. All cell lines were collected for RNA and gDNA extraction within 10 passages after receipt from ATCC.

2.5. In vitro Romidepsin treatments

Cells cultured as above were treated with 2-5 nM Romidepsin for 4 h, media was replaced, and cells were collected 20 h later for RNA-seq and ChIP-seq.

2.6. Luciferase reporter assays

Putative regulatory regions were PCR amplified from HH, HUT78, or Jurkat cell line gDNA with Accuprime Pfx DNA polymerase (Invitrogen) using primers with a Nhel or Xhol cut site added to their 5’ end (Table S1). PCR samples were gel-extracted (Qiagen cat. 28,706), digested with Nhel and Xhol (New England Biolabs), gel-purified again, and ligated into the Promega pGL4-23 plasmid overnight at 23 °C with T4 DNA ligase (New England BioLabs, cat. M0202S). Sanger sequencing confirmed successful cloning. 1 μg of each luciferase plasmid and 15 ng of Promega’s pNL1·1·TK vector (#N1501) were co-nucleofected into 1 × 10^6 HUT78 cells with an Amaxa Nucleofector 2b system using the X-001 program and a homemade nucleofection buffer (SM1) as described [15]. Cells were incubated for 24 h in IMDM (Gibco) supplemented with 20% FBS and 1% penicillin-streptomycin, centrifuged at 200g for 10 min, and resuspended in 200 μL media. 60 μL were added to each well of a 96 well flat-bottom, white, opaque plate. The Promega Nano-Glo system (#N1110) was used to read the firefly and renilla luciferase for each well according to the manufacturer’s instructions in a BioTek Cytation5 plate reader. All experiments were normalized genome browser tracks were created with deepTools’ bamCoverage utility with settings –binSize 10 -shiftSize = 150 and renilla luciferase readings for each sample were compared to the average ratio for the empty pGL3-promoter vector to determine relative luciferase.

2.7. ChIP-seq

0.5–1.0 × 10^7 cells were snap-frozen for 15 min on dry ice and stored at −80 °C until use. Ultra-low-input chromatin immunoprecipitation for H3K9/K14 ac and H3K27ac (Abcam ab4729) was performed as described [16]. DNA was sequenced by the Washington University Genome Technology Access Center on an Illumina Hi-Seq 3500 to generate 50 bp single-end reads. Reads were aligned to hg19 with UCSC annotations using STAR (v2·5·3a) [26]. RPKM normalized genome browser tracks were created with deepTools’ bamCoverage utility and visualized on the UCSC genome browser. Read quantification was performed by Salmon (v0·11·0) using UCSC hg19 knownGene annotations [27], and differential gene expression analyses were done with the DESeq2 R package (v1·20·0) [28]. Genotypy (v1·2·1) was used for manual gene curation [29]. All data analysis was done in SoS Notebook environments [30]. All gene ontology and pathway enrichments were performed on the Enrichr web server [31].

2.8. RNA-seq

0·5-2 × 10^6 cells from each sample were stored in 1 mL TRIZol reagent (Invitrogen cat. 15,596,026). RNA was isolated by the Washington University Tissue Procurement Center and sequenced by the Washington University Genome Technology Access Center on an Illumina Hi-Seq 3500 to generate 50 bp single-end reads. Reads were aligned to hg19 with UCSC annotations using STAR (v2·5·3a) [26]. RPKM normalized genome browser tracks were created with deepTools’ bamCoverage utility and visualized on the UCSC genome browser. Read quantification was performed by Salmon (v0·11·0) using UCSC hg19 knownGene annotations [27], and differential gene expression analyses were done with the DESeq2 R package (v1·20·0) [28]. Genotypy (v1·2·1) was used for manual gene curation [29]. All data analysis was done in SoS Notebook environments [30]. All gene ontology and pathway enrichments were performed on the Enrichr web server [31].

2.9. Quantitative real-time PCR

RNA was isolated from 0·5-2 × 10^6 cells stored in 1 mL TRIZol reagent following reagent instructions. RNA was removed with the TURBO DNA-free kit (Invitrogen cat. AM1907) and cDNA synthesized from 1 μg of RNA with a High-Capacity cDNA Reverse Transcription kit (Applied Biosystems cat. 4368814). PCR reactions were performed with SsoAdvanced Universal SYBR Green Supermix (Bio-Rad cat. 1725271) in a Bio-Rad CFX96 Connect. Target primers are available in Table S1. Relative expression to healthy CD4+ cells was calculated via the ΔΔCT method [32].

2.10. LAIR2 ELISA

Plasma was collected from primary MF/SS and healthy control peripheral whole blood by centrifuging for 15 min at 1500g within 30 min of collection in EDTA-coated tubes. Plasma was stored at −80 °C until use. The LAIR2 sandwich ELISA (LifeSpan Biosciences cat. LS-F6502) was performed according to manufacturer instructions with plasma samples diluted 1:2. All samples were read in duplicate, and a third-order polynomial regression line was fit to the standard curve to calculate concentration.

2.11. Statistical analyses

All statistical tests were performed with GraphPad Prism (v8·1·1).

2.12. Data accession

Sequencing data was deposited in GEO: GSE132053. External datasets used include GEO: GSE59307, GSE9479, and GSE113113.

3. Results

To define epigenetic changes that are associated with response or resistance to HDACi, we first sought to map the epigenome-wide histone acetylation landscape of primary patient CTCL samples. Patients being treated at the Cutaneous Lymphoma Clinic at the Washington University School of Medicine were consented for tissue banking. Patient demographics and clinical data are summarized in Table 1 and individual patient data is included in Table S2. For this study, 20 patients had specimens collected and subjected to epigenome and transcriptome analyses. Comparisons of HDACi sensitivity or resistance were performed for 17 MF/SS patients treated with romidepsin (n = 14) or vorinostat (n = 3). Skin biopsies and peripheral blood were collected at timepoints prior to the start of HDACi therapy, during the course of therapy, and/or at subsequent follow-up visits. For romidepsin patients, “pre” specimens were collected just prior to first infusion and “post” specimens were collected at the end of the infusion, one week later (prior to the second infusion), or at subsequent visits (Fig. 1A and Table S3). Thirty-nine specimens defined this “discovery set” for epigenome and/or transcriptome studies. We assigned these specimens to HDAC-sensitive or -resistant groups based on the patients’ clinical responses to HDACi therapy, determined by blinded review of the medical record. Sensitive: specimens from patients who experienced partial or complete
Fig. 1. Epigenome-wide profiling identifies hyperacetylation of genes and regulatory elements in CTCL that responded or progressed on HDACi-therapy.

a) Diagram of study design.

b) Heatmap of differentially bound (FDR ≤ 0·05) H3ac peaks (n = 4868) Sensitive and Resistant groups.

c) Violin plot showing differences in log2 fold changes for H3ac peaks enriched in Resistant samples categorized by functional genomic region (Kruskal-Wallis test; *, P ≤ 0·05; **, P ≤ 0·01; ***, P ≤ 0·001; ****, P ≤ 0·0001).

d) Bar plot comparing RNA-seq log2 fold changes of genes associated with H3ac peaks enriched in Resistant samples (Incr.) to genes not associated with enriched peaks (Not Incr.). H3ac peaks are categorized by functional genomic region. (Mann-Whitney test; ***, P ≤ 0·001; ****, P ≤ 0·0001). Mean with 95% confidence interval shown.
responses or stable disease with HDACi therapy; Resistant: specimens from patients who experienced progressive disease during treatment with HDACi (Tables 1 and S2 & S3). Assignment to these groups was based on HDACi response during the course of therapy in which the specimen was collected. We also collected peripheral blood from healthy volunteers and purified control CD4+ T cells. From patient specimens, we purified malignant MF/SS cells (CD4+ /CD7− or CD4+ /CD26−, see Methods). Purity of malignant T cells from Resistant and Sensitive samples was similar (92.5% and >99%, respectively); median purity for all samples was >90%.

HDAC inhibitors prevent the deacetylation of chromatin histone proteins, resulting in increased levels of acetylation. Histone acetylation is most often an activating modification that leads to increased expression of nearby genes. Two of the most prominent of these are H3K9/14 ac (H3ac), which mark active enhancers and promoters, and H3K27ac, which marks active enhancers. Because cellular yields were limiting in primary MF/SS samples, we optimized a method for performing histone acetylation profiling (H3K27ac, H3K9/14 ac) from small numbers of cells: ultra-low input chromatin immunoprecipitation and sequencing (ULI-ChIP-seq) [33]. For comparison, we treated healthy control CD4+ T lymphocytes with romidepsin using a dose and timing based on existing literature and to mimic, to the extent possible, the exposure of primary MF/SS tumors treated in vivo [34]. RNA-sequencing of the same samples was performed in parallel.

3.1. Altered acetylation corresponds to dysregulated gene expression in HDACi resistant MF/SS

To define epigenetic and linked gene expression changes associated with HDACi resistance or response, we updated and optimized an integrative informatic pipeline that we had created previously to analyze ULI-ChIP- and RNA-seq data from serial MF/SS samples and the in vitro treated T cells (see Methods). Briefly, we used MACS2 to call acetylation peaks with an FDR q value <0·01 [20]. We first derived consensus peak sets and then identified differentially bound peaks between sample groups using the DiffBind R package and an FDR q value <0·05 [24]. The heatmap in Fig. 1B shows the ~5000 acetylation peaks with significantly altered activity in resistant compared to sensitive sample groups (Table S3); the majority of these are increased in samples from patients with progressive disease on HDACi. Comparison of functional genomic regions (promoter, enhancer, exon, intron) revealed that the greatest number of significantly altered acetylation peaks are located within introns and distal intergenic regions (enhancers), compared to promoters and exons. Most of these peaks have increased acetylation in resistant samples (Fig. S1A). Indeed, we observed a greater than two-fold change (log2) in all functional genomic regions, with distal intergenic (enhancer) regions having the highest relative increase in acetylation (Fig. 1C). The small number of peaks with decreased acetylation in resistant samples similarly showed a greater than two-fold reduction in all functional regions (Fig. S1B). Because acetylation is an activating histone modification associated with increased transcription, we examined the expression of genes linked to genomic regions with significantly higher acetylation in resistant versus sensitive samples. As expected, genes with highly acetylated regulatory elements (distal enhancer regions and promoters), as well as exons and introns, had significantly higher expression compared to genes with unchanged or decreased acetylation at these elements (Fig. 1D). These data demonstrate that MF/SS tumors that progress during HDACi treatment have significantly increased histone acetylation at thousands of regulatory elements compared to HDACi-sensitive MF/SS tumors, and that their target genes exhibit significantly increased expression.

3.2. HDACi-resistant MF/SS exhibits high expression of anti-apoptotic, cell cycle, and cell adhesion/migration genes

We next directly evaluated the transcriptomes of primary patient MF/SS samples based on their response to HDACi. Using DESeq2, we identified 491 genes with significantly different expression in resistant versus sensitive samples (Fig. 2A–B and Tables S3 & S4) [28]. Similar to the histone acetylation changes we observed above (see Fig. 1), a majority of significantly altered genes have higher expression in the HDACi-resistant group (357 up versus 134 down). To validate these expression changes in additional MF/SS samples, we obtained publicly available RNA-seq data from a study of early to advanced stage MF (n = 49) samples and healthy control CD4+ T cells (n = 3) [35]. Genes up-regulated in HDACi-resistance also exhibited higher expression in MF samples compared to control CD4+ T cells from the Querfeld et al. study (Fig. S2A) [35]. In contrast, genes that were down-regulated in HDACi-resistant samples were not significantly different across this independent dataset (Fig. S2B).

Gene ontology and pathway analyses revealed several significantly enriched pathways for HDACi-resistance upregulated genes, but none for downregulated genes (Fig. 2C and Table S5). A number of the upregulated genes in these pathways have been previously associated with MF/SS or HDACi treatment, but many are novel to this analysis of HDACi response/resistance in MF/SS. These include anti-apoptotic, BCL2 (known) and BIRC5 (novel); cell cycle, CDK1 (known) and CDC6 (novel); and proliferation, RAB25 and RMI1I (both novel) [36,37]. We also observed a number of upregulated genes with inflammatory functions, such as TNFAIP3, which is known to be upregulated and/or mutated in B cell lymphoma [38–41], and STAT4, which was reported to be downregulated in several MF/SS studies [42], but we find to be nearly two-fold upregulated (1·9 log2 fold change, p < 0·0001) in HDACi-resistant samples. Quite striking was the number of extra-cellular matrix, cell adhesion, and cell migration genes that were upregulated in the resistant group, including several not previously associated with MF/SS: CCR6 (known), CCL28 (novel), EPCAM (novel), VCAM1 (novel), and LAIR2 (novel) [42–45]. Upregulation of these genes in the resistant group suggest that increased proliferation, anti-apoptotic signaling, and higher levels of chemotaxis and migration may represent functional mechanisms of HDACi resistance and/or MF/SS progression.

Alterations in histone acetylation likely contribute to the differences in gene expression we identified in HDACi-resistant or responsive MF/SS. Indeed, upregulated genes had significantly higher levels of histone acetylation at regulatory elements and gene bodies compared to
unchanged/downregulated genes, with promoters exhibiting the greatest relative increase in acetylation (Fig. 2D). Similarly, downregulated genes had significantly lower chromatin acetylation levels compared to genes with unchanged/increased expression, with promoters and exons exhibiting the greatest decreases in acetylation (Fig. 2E). Taken with the data presented in Fig. 1, these results further support a role for differential histone acetylation in HDACi resistance and link acetylation to anti-apoptotic, cell cycle, and cell adhesion/migration pathways as potential mechanisms of resistance and MF/SS progression.

3.3. Primary MF/SS HDACi-resistance genes are distinct from those identified by in vitro studies

A number of studies have identified mechanisms that contribute to HDACi resistance, the vast majority of which were performed in vitro, generally in cancer cell lines. Approximately 30 genes and proteins reportedly contribute to HDACi resistance, including those in ABC transporter (MDR), pro-apoptotic (Fas, Caspase), anti-apoptotic (BCL), heat shock, HDAC, JAK-STAT, MAPK/PI3K, NFκB, Redox, and TNF pathways [13,14]. To evaluate these mechanisms in primary MF/SS samples, we examined the expression of genes in these pathways (n = 361) (Fig. S2C and Table S6). Of these, 14 were significantly altered in resistant versus sensitive groups. Notably, only 3/14 had been previously associated with HDACi resistance: anti-apoptotic gene BCL2 and PI3K genes Pik3c2a and Pik3c2b, and these latter two were significantly decreased in the resistant group while increases have been reported [13]. While other STIs were unchanged, we detected significantly increased expression of STAT4, which has not been previously connected to HDACi resistance. We also identified three genes involved in Redox pathways that had not previously been reported: TXNDC5, whose product catalyzes thiol-disulfide interchanges, and GSTM1 and GSTM2, which are glutathione S-transfereases that detoxify drugs, toxins, and reactive oxygen species. Decreases in TNF-related apoptotic pathway proteins are also associated with resistance to HDACi treatment in vitro [13], but we detected increases in two of these genes, TNFRSF17 and TNFAIP3, both of which promote B cell survival, and no change in the rest of these genes (51/53). A caveat to this RNA-seq analysis is that it does not measure levels of protein or phosphoprotein, which may be different from mRNA levels. Nevertheless, we demonstrate that mRNA expression of most of the HDACi-resistance pathways previously identified in vitro are not significantly altered in primary MF/SS HDACi-resistant versus sensitive groups. In addition, we identify STAT4, TNFRSF17, TNFAIP3, GSTM1, GSTM3, and TXNDC5 as previously unrecognized genes whose upregulated expression may contribute to HDACi-resistance in MF/SS disease.

3.4. Differences in the expression of key resistance-associated genes are detectable pre-HDACi treatment

We next asked which of the gene expression differences in MF/SS samples collected pre- and post-one-week romidepsin therapy coincided with, or diverged from, expression changes induced by in vitro romidepsin treatment of normal CD4+ T cells. We therefore compared RNA-seq from healthy donor CD4+ T cells pre- and post-romidepsin treatment and paired MF/SS samples collected immediately post-infusion and one-week post-infusion of romidepsin. We identified genes with increased expression (log2 fold change ≥1) in paired post-versus pre-treatment MF/SS samples (>2300) or healthy CD4+ T cells (800). Of these upregulated genes, only 136 were in common (5-8% of MF/SS, 17% of healthy CD4+ T cells) (Fig. 3A). The numbers of downregulated genes (log2 fold change ≤−1) in each comparison were more similar: 1011 for MF/SS and 1154 for healthy CD4+ T cells. The 188 genes in common comprised 18-6% of MF/SS and 16-3% of healthy CD4+ T cell downregulated genes (Fig. 3B). As we observed with the MF/SS samples, genes with expression changes in HDACi-treated control T cells had corresponding changes in acetylation (Fig. S3). Thus, the MF/SS cells exhibited a substantially greater number of genes with increased expression after romidepsin treatment compared to healthy donor CD4+ T cells.

Given that we observed significant differences in hundreds of genes in HDACi-resistant versus -sensitive groups (Figs. 1 & 2), we asked whether these differences were also detectable in the post- versus pre-treatment analysis. Indeed, we found that the HDACi-resistant MF/SS samples showed consistently higher expression of these differentially expressed genes, and surprisingly, many of these were significantly increased in pre-treatment samples (Fig. S4). Several examples are shown in Fig. 3C. These include anti-apoptotic genes BCL2 and BIRC5 (Survivin), which promote proliferation and prevent apoptosis in multiple cancer types, including B and T cell lymphomas [46]. We also identified genes in cell cycle pathways such as CDK1, a cyclin-dependent kinase that promotes mitosis, and RR2, a ribonucleotide reductase enzyme involved in DNA replication/repair. Cell adhesion pathway genes also showed this pattern in HDACi-resistance, including NRP2, whose protein product binds semaphorins and VEGF and is involved in the migration of T cells and other immune cells [47], and LAIR2, which codes for a secreted receptor co-receptor protein expressed by T and NK cells [48]. In an independent study of CTCL that did not evaluate HDACi therapy [35], expression levels of RRM2, BIRC5, CDK1, CCR6, CXCR4, and LAIR2 are significantly higher in MF compared to control skin samples, with a trend toward higher expression in more advanced stages (Fig. S5). NRP2 expression showed a non-significant trend toward higher expression in MF samples, but NRP2 expression was not different from control skin (Fig. S5). The pattern of higher expression of these genes in advanced disease and HDACi-resistant samples, detectable pre- and post-HDACi, suggests that they may be involved in disease progression and/or mechanisms of HDACi resistance.

3.5. Highly acetylated regions demonstrate robust enhancer activity in reporter assays

To confirm enhancer activity of regions with higher levels of acetylation in HDACi-resistant versus sensitive samples, we performed luciferase reporter assays in an MF/SS cell line (HUT78) by adapting previously described protocols [49]. We selected putative enhancer regions that met the following criteria: 1) higher acetylation in resistant samples, 2) likely to regulate expression of nearby genes based on GenElancer interactions and ENCODE transcription factor binding data, 3) target gene(s) with significantly elevated expression in resistant samples, and 4) the regulated genes have known or potential roles in lymphoma progression and/or drug resistance. Three gene loci with enhancer regions meeting these criteria were subjected to luciferase reporter assays (Figs. 4 and S6). CCR6 is a beta chemokine receptor expressed by normal memory T cells and MF/SS that may regulate their migration and recruitment in inflammation and MF/SS metastasis [43]. Expression of CCR6 is significantly higher in resistant samples (Fig. S7), and the gene locus contains two distal intergenic elements upstream of the promoter/transcription start site (TSS) and two elements within the first intron that exhibit significantly higher levels of H3K27 and K3K9/14.
acetylation in the resistant group (Figs. 4A and S6). Luciferase assays confirmed strong enhancer activity in one of the intronic elements (6-fold higher activity compared to empty vector, Fig. 4B). In the LAIR2 locus, we tested three regions with higher acetylation in resistant samples, two distal intergenic elements upstream of the promoter/TSS and another element in the second intron of LAIR2 (Figs. 4C and S6E). Luciferase assays confirmed strong enhancer activity for the intronic element, with >10-fold greater activity compared to the vector alone (Fig. 4D). The chemokine receptor CXCR4 binds CXCL12/SDF-1 and this signaling axis plays major roles in cell migration and immune response [50]. CXCR4 expression is higher in the resistant group (Fig. 5), and we identified three upstream intergenic regions with higher acetylation in resistant samples (Figs. 4E and S6E). Luciferase reporter assays demonstrated robust enhancer activity (5-fold) for the two most distal of these elements (Fig. 4F). These results demonstrate that highly acetylated elements near upregulated genes in resistant samples harbor strong enhancer activity, suggesting that these elements may drive high expression of genes that promote HDACi resistance in MF/SS.

3.6. LAIR2 is a novel marker of HDACi-resistance in MF/SS

Among the genes with highly acetylated enhancers and significantly upregulated expression in the HDACi-resistant group, LAIR2 was particularly intriguing because of the degree of upregulation and its roles in T cell adhesion, migration, and activation [48, 51]. We confirmed the RNA-seq results using qRT-PCR for LAIR2 in additional MF/SS samples from the same patients, including additional time points; in some cases, the additional samples were collected during treatment with non-HDACi therapies due to progression on HDACi. We also tested peripheral blood CD4+ T cells from healthy donors and T cell lines (Jurkat, leukaemia; HH and HUT78, MF/SS). We found substantially higher levels of LAIR2 mRNA in samples from patients with MF/SS that were progressing on HDACi therapy compared to normal CD4+ T cells or to samples from patients with MF/SS that was responding to therapy (Fig. 5A). We noted that in two samples from two patients with mixed response to therapy (i.e., response in lymph nodes/blood and progression in skin, 1126 B, 999), LAIR2 expression was trending higher than samples from the same patient at different time points in complete response or compared to samples from other patients in complete response. LAIR1 is a highly homologous gene located near LAIR2 on chromosome 19q13-42. In contrast to LAIR2, LAIR1 expression was not significantly higher in MF/SS compared to healthy control CD4+ T cells, and HDACi-resistant samples were not different from sensitive (Fig. 5B).

To evaluate LAIR2 expression in additional MF/SS patient cohorts, we obtained publicly available expression data from four studies in which mRNA was collected from MF or SS samples and from healthy control CD4+ T cells in 2 of 4 studies [35, 52-54]. Similar to our findings in HDACi-resistant MF/SS samples measured by RNA-seq (Fig. 5C), LAIR2 expression quantified by microarray was higher in MF and SS samples compared to control CD4+ T cells, (Figs. 5D and S8A) [53]. In a larger study using RNA-seq (49 MF, 3 control), LAIR2 expression was significantly higher (two-fold on a log2 scale) in all stages of MF compared to controls [35]. More advanced stage disease (IA and above) showed higher LAIR2 levels than early stage MF (IA/IB) in this study, as well as another CTCL study that performed microarray analysis (Figs. 5E and S8B) [52]. LAIR1 levels were not statistically different in purified MF/SS cells from resistant versus sensitive samples (Fig. S8C) or were slightly decreased in Sezary cells (Fig. S8D) compared to healthy control CD4+ T cells [54]. In unsorted MF samples, LAIR1 expression was increased relative to control samples (Fig. S8E) [35]. However unlike LAIR2, which is expressed only in T and NK cells, LAIR1 is expressed on nearly all immune cells, including monocytes, macrophages, T, B, and NK cells, dendritic cells, mast cells, and eosinophils, so the increased levels may reflect the inflammatory microenvironment of MF-involved skin [55]. Thus, we demonstrate using several different methods that LAIR2 expression is significantly higher in HDACi-resistant MF/SS disease.

The gene that encodes LAIR2 lies within the leukocyte receptor complex (LRC), a gene cluster on chromosome 19q13.4 that is rich in leukocyte immunoglobulin-like receptor (LIR) and Killer cell immunoglobulin-like receptors (KIRs) genes (Fig. S9). These genes encode transmembrane inhibitory and activating receptors expressed by T cells and/or NK cells, which are highly polymorphic; expression differences and genomic polymorphisms have been associated with autoimmune and infectious diseases [56, 57]. LAIR2 is present in primates but absent in most other organisms, including mice (Fig. S9) [48]. In amino acid sequence, LAIR2 is highly homologous to the N-terminus of LAIR1, which includes the Ig-like domain, but lacks the transmembrane and intracellular domains that are present in LAIR1 (Fig. 5F). LAIR2 is a secreted protein and has been detected in the body fluids of patients with autoimmune disease [48, 58]. Therefore, we collected plasma from MF/SS patients and healthy donors and performed ELISA using an anti-LAIR2 antibody. Consistent with mRNA levels, we detected significantly higher levels of LAIR2 protein in MF/SS plasma compared to healthy controls (Fig. S5G). Notably, the patient with the lowest plasma concentration of LAIR2 protein, which was equivalent to healthy controls, has had a sustained response to romidepsin over four years of treatment (Patient 1125). Taken together, these results demonstrate that LAIR2 mRNA and protein expression levels are significantly higher in both malignant cells and plasma from patients with HDACi-resistant MF/SS.

4. Discussion

An outstanding question in CTCL research is why only a fraction of patients respond to HDACi therapy [6], and the related question of how response and resistance could be predicted to inform therapeutic choice. Here we have identified significant differences in the histone acetylation of gene regulatory elements in samples from CTCL patients with HDACi-resistant versus -sensitive disease and linked them to significant expression changes in cell cycle, apoptosis, cytokine/chemokine signaling, and cell adhesion/migration pathways. We and others have previously shown that high levels of acetylation of enhancers and promoters can lead to overexpression of oncogenes that promote cancer pathogenesis [49, 59-62]. In this study, we demonstrated that enhancer elements near potential MF/SS oncogenes CCR6, CXCR4, and LAIR2 had significantly increased acetylation levels in HDACi-resistant samples also showed strong enhancer activity by luciferase reporter assay. These results suggest that highly acetylated elements may drive the high expression levels of target genes in resistant samples, promoting enhanced chemotaxis, cell migration, and inflammation that contribute to progressive disease.

We validated our findings in several independent expression profiling studies of MF/SS, showing that HDACi-resistance genes were generally elevated in MF/SS compared to normal CD4+ T cells and several genes exhibited higher levels in more advanced stages of MF.
that encodes a secreted collagen receptor protein [48]. LAIR1 transmits inhibitory signaling that reduces immune cell activation/receptors are collagen types I, III, and IV. When bound to collagens, LAIR2 is a close homologue, was significant in these patients. The corresponding author (Jacqueline Payton) had full access to all of the authors was paid to write the article by a company or any other agency. None of the funding sources had any role in data collection, analysis, interpretation, trial design, patient recruitment, writing the manuscript, or any other aspect pertinent to the study. None of the authors had any conflict of interest. This work was supported by NIH grants CA156690, CA188286 (J.E.P.), the Washington University Institute of Clinical and Translational Sciences grant UL1 TR000448 from the National Center for Advancing Translational Sciences (NCATS) (Pilot Award to J.E.P.), and Siteman Cancer Center (CA091842) (Pilot Award to J.E.P.) grants. Sequencing performed by the Genome Technology Access Center, which is partially supported by NCI Cancer Center Support Grant #P30 CA91842 to the Siteman Cancer Center and by ICTS/CTSA Grant# UL1 TR000448 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and NIH Roadmap for Medical Research. The ICTS is funded by the NIH’s NCATS Clinical and Translational Science Award (CTSA) program grant #UL1 TR002345. This publication is solely the responsibility of the authors and does not necessarily represent the official view of NCRR or NIH. None of these sources had any role in the decision to submit for publication.

Author contributions

Conception and design: J.E. Payton, J.M. Andrews, N. Mehta-Shah.

Development of methodology: J.M. Andrews, J.E. Payton, J.A. Schmidt.

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J.M. Andrews, J.E. Payton, A.C. Musiek, N. Mehta-Shah, J.A. Schmidt, K.R. Carson.

Analysis and interpretation of data (e.g., statistical analysis, bio-statistics, computational analysis): J.M. Andrews, J.E. Payton.

Writing, review, and/or revision of the manuscript: J.M. Andrews, J.E. Payton, A.C. Musiek, N. Mehta-Shah, J.A. Schmidt, K.R. Carson.

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): J.M. Andrews, J.A. Schmidt, J.E. Payton.

Fig. 4. Luciferase reporter assays confirm enhancer activity for regulatory elements near HDACi-resistant upregulated genes. a) UCSC genome browser snapshot showing the CCR6 locus with representative Resistant and Sensitive samples. All signal tracks are normalized to reads per kilobase per million mapped reads (RPKM). Putative enhancer regions assayed by luciferase reporter are highlighted. b) Enhancer activity of putative CCR6 enhancer regions measured by luciferase reporter in HUT78 cells. All assays were performed at least twice and read in triplicate. Ratios are relative to empty vector. c) UCSC genome browser snapshot showing the LAIR2 locus with representative Resistant and Sensitive samples, as in a. d) Enhancer activity of putative LAIR2 enhancer regions (c) in HUT78 cells, performed as in b. e) Enhancer activity of putative CXCR4 enhancer regions (f) in HUT78 cells, performed as in b. (Mann-Whitney test *, p ≤ 0·05; **, p ≤ 0·01) Mean with standard deviation shown.
Fig. 5. LAIR2 is upregulated in multiple independent MF/SS datasets. a) LAIR2 mRNA expression measured by qRT-PCR in healthy control CD4+ T cells, T cell lines, and primary MF/SS samples. Green bars: responding to therapy; Pink bars: mixed response to therapy; Purple bars: progressive disease. (Unpaired student’s t-test compared to control; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). Mean with standard deviation shown. b) LAIR1 mRNA expression measured as in a. (Unpaired student’s t-test compared to control; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001). Mean with standard deviation shown. c) LAIR2 mRNA expression in CD4+ T cells purified from Sensitive and Resistant MF/SS samples (WUSM, RNAseq). d) LAIR2 mRNA expression in control skin (n = 8) and primary MF (n = 6) (microarray; Mann-Whitney test; Humme et al., 2015). e) LAIR2 mRNA expression in control skin (n = 3) and primary MF (n = 49) biopsies (RNAseq; Kruskall-Wallis test; Querfeld et al., 2018). c-e show mean with 95% CI. f) Diagram showing protein domains in LAIR2 and LAIR1. g) LAIR2 protein expression measured by ELISA in plasma from healthy controls and CTCL patients (colours as in A&B; unpaired Welch’s t-test; **, P ≤ 0.01). Mean with standard deviation shown.
Study supervision: N. Mehta-Shah, J.E. Payton.

Declaration of Competing Interest

N. Mehta-Shah reports research funding from Celgene, Verastem Pharmaceuticals, Roche/Genentech, and Bristol Myers Squibb and is a consultant for Kiowa Hakka Kirin. K. R. Carson is also employed by Flatiron Health. A. C. Musiek reports research funding from Pfizer, Helsinn, miRagen, Solgenix, Kyowa, Elorac, and Actelion and is also on the advisory boards for Actelion and Kyowa. No potential conflicts of interest were disclosed by the other authors.

Acknowledgements

We thank the Washington University School of Medicine Lymphoma Banking Program of the Division of Medical Oncology in the Department of Medicine for support of the biopsy and banking program. We are grateful to the patients, their caregivers and families, and the patient coordinators who participated in this study.

References

Fig. 6. Proposed model for the role of LAIR2 in MF/SS pathogenesis. a) MF/SS cells that produce low/no LAIR2, such as in the Sensitive group, would still bind collagen through LAIR1, causing inhibitory signaling through LAIR1 ITIM domains. LAIR1-mediated inhibitory signaling could decrease proliferation, immune response, and inflammation. b) MF/SS cells that produce high levels of LAIR2, such as in the Resistant group, would have decreased binding of LAIR1 to collagen, causing decreased inhibitory ITIM signaling. Loss of LAIR1-inhibitory signaling could promote migration and proliferation of MF/SS cells and increased inflammation in the tumor microenvironment through decreased inhibitory signaling in local benign T and NK cells.

