Glibenclamide reverses cardiovascular abnormalities of Cantu syndrome driven by KATP channel overactivity

Conor McClenaghan
Yan Huang
Zihan Yan
Theresa M Harter
Carmen M Halabi

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs
Glibenclamide reverses cardiovascular abnormalities of Cantu syndrome driven by K_{ATP} channel overactivity

Conor McClennaghan, …, Maria S. Remedi, Colin G. Nichols

Graphical abstract

Find the latest version:

https://jci.me/130571/pdf
Glibenclamide reverses cardiovascular abnormalities of Cantu syndrome driven by K_{ATP} channel overactivity

Conor McClanaghan,1,2,3 Yan Huang,1,2,3 Zihan Yan,1,4 Theresa M. Harter,1,2,3 Carmen M. Halabi,1,5 Rod Chalk,5 Attila Kovacs,7 Gijs van Haafken,6 Maria S. Remedi,1,4 and Colin G. Nichols1,2,3

1Center for the Investigation of Membrane Excitability Diseases, 2Department of Cell Biology, 3Department of Physiology, 4Division of Endocrinology, Department of Medicine, and 5Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, Missouri, USA. 6Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom. 7Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA. 4Center for Molecular Medicine, Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands.

Cantu syndrome (CS) is a complex disorder caused by gain-of-function (GoF) mutations in ABCC9 and KCNJ8, which encode the SUR2 and Kir6.1 subunits, respectively, of vascular smooth muscle (VSM) K_{ATP} channels. CS includes dilated vasculature, marked cardiac hypertrophy, and other cardiovascular abnormalities. There is currently no targeted therapy, and it is unknown whether cardiovascular features can be reversed once manifest. Using combined transgenic and pharmacological approaches in a knockin mouse model of CS, we have shown that reversal of vascular and cardiac phenotypes can be achieved by genetic downregulation of K_{ATP} channel activity specifically in VSM, and by chronic administration of the clinically used K_{ATP} channel inhibitor, glibenclamide. These findings demonstrate that VSM K_{ATP} channel GoF underlies CS cardiac enlargement and that CS-associated abnormalities are reversible, and provide evidence of in vivo efficacy of glibenclamide as a therapeutic agent in CS.

Introduction

Cantu syndrome (CS) is a complex disorder with multiple cardiovascular abnormalities, including edema, dilated and tortuous blood vessels with decreased systemic vascular resistance, patent ductus arteriosus (PDA), and marked cardiac hypertrophy (I). CS is caused by gain-of-function (GoF) mutations in KCNJ8 and ABCC9, which encode pore-forming Kir6.1 and regulatory SUR2 subunits, respectively, of ATP-sensitive potassium (K_{ATP}) channels (2–12). These subunits are prominently expressed in smooth muscle (SM) cells, and vascular SM (VSM) K_{ATP} channel activation underlies the chronically dilated vasculature observed in patients with CS (13–17). Notably, Kir6.1 is not a major component of cardiomyocyte K_{ATP} channels (wherein the related Kir6.2 [KCNJ11] is the predominant pore-forming isofrom [refs. 3, 18]) and so how CS-associated mutations in both KCNJ8 and ABCC9 result in cardiac hypertrophy is therefore unclear. We recently developed murine CS models in which disease-causing ABCC9 or KCNJ8 mutations were knocked-in to the equivalent mouse loci using CRISPR/Cas9. These animals exhibit increased VSM K_{ATP} channel activity and consequent chronic vasodilatation, which we propose triggers systemic feedback mechanisms aimed at maintaining perfusion—including increased cardiac output and cardiomyocyte hypertrophy—in CS (19).

There are currently no targeted therapies for CS and it is not known if, or to what extent, cardiovascular abnormalities can be reversed once manifest. K_{ATP} channel inhibitors, including the sulfonamide glibenclamide (glyburide), are used clinically to treat diabetes due to their inhibitory action on pancreatic K_{ATP} channels (formed of Kir6.2/SUR1). These drugs also inhibit cardiovascular K_{ATP} channels and thus may potentially be repurposed for the treatment of CS (20). In this study we thus sought to directly test the hypothesis that cardiac hypertrophy occurs secondary to K_{ATP} GoF in VSM, to investigate whether cardiac remodeling in CS is reversible, and to test the potential for glibenclamide treatment of cardiovascular abnormalities in Cantu mice.

Results and Discussion

Cardiovascular abnormalities in CS result from K_{ATP} channel GoF in VSM cells. To directly test whether cardiac remodeling occurs as a secondary response to VSM K_{ATP} channel GoF, we crossed CS (SUR2^{−/−}/Kir6.1^{−/−}/Kir6.2^{−/−}/KCNJ11^{−/−}) mice with animals expressing smooth muscle myosin heavy chain promoter-driven Cre-recombinase (SM-Cre) and dominant-negative $KCNJ8$ (Kir6.1-AAA) transgenes, allowing inducible suppression of K_{ATP} in smooth muscle of WT and CS mice (Figure 1A). Induction of expression at 8 weeks resulted in complete loss of K_{ATP} function, determined by whole-cell patch clamp recordings from isolated aortic myocytes (Figure 1, B and C). As previously reported (19), SUR2^{−/−}/Kir6.1^{−/−}/Kir6.2^{−/−}/KCNJ11^{−/−} mice exhibit lower mean arterial pressure (MAP) than WT, and dominant-negative suppression of smooth muscle K_{ATP} on this CS background (in SM-DN^{−/−}/Kir6.1^{−/−}/Kir6.2^{−/−}/KCNJ11^{−/−} mice) resulted in significant MAP elevation (Figure 1, D and E). Most strikingly, cardiac hypertrophy was essentially completely reversed in SM-DN^{−/−}/Kir6.1^{−/−}/Kir6.2^{−/−}/KCNJ11^{−/−} mice 4 weeks after transgene induction (Figure 1F). These findings confirm a principal role for
VSM \(K_{\text{ATP}} \) overactivity in the generation of cardiac hypertrophy. Importantly, they also show that cardiac hypertrophy can be reversed once manifest, and hence establish VSM \(K_{\text{ATP}} \) channels as appropriate molecular targets for pharmacological treatment of CS cardiovascular abnormalities.

Pharmacological reversal of CS-associated cardiovascular abnormalities in Cantu mice. We next hypothesized that reversal might also be achieved by pharmacological inhibition of overactive VSM \(K_{\text{ATP}} \) channels. Mice were implanted with subcutaneous, slow-release pellets formulated to release a moderate or high dose (approximately 1 or approximately 19 mg/kg/day) of glibenclamide for 4 weeks, which resulted in measured plasma concentrations of 30 \(\pm \) 8 ng/mL (approximately 60 nM) and 147 \(\pm \) 51 ng/mL (approximately 300 nM), respectively. Cardiac hypertrophy was reversed in a dose-dependent manner (Figure 2A), almost completely at the highest dose, comparable to the effect of genetically induced VSM \(K_{\text{ATP}} \) downregulation in SM-DN\(^{w2\text{AV}}\) mice (Figure 1). Consistent with an action on VSM \(K_{\text{ATP}} \) channels, high-dose glibenclamide elevated arterial pressure (MAP) and fully restored vascular resistance (SVR) in SUR2\(^{w2\text{AV}}\) mice (Figure 2, B and C). Glibenclamide also induced a partial reversal of the elevated cardiac index observed in SUR2\(^{w2\text{AV}}\) mice (Figure 2D). Hypertrophy in SUR2\(^{w2\text{AV}}\) mice is not associated with significant fibrosis, and fibrosis was not induced by glibenclamide (Figure 2E). Glibenclamide induced no impairment of cardiac function as determined by echocardiographic measurements of ejection fraction (Figure 2F).

Notably, high-dose glibenclamide did not reverse the marked carotid diameter enlargement observed in SUR2\(^{w2\text{AV}}\) mice (Figure 2G and ref. 19), and a similar resistance to reversal was observed in SM-DN\(^{w2\text{AV}}\) mice (Figure 2H). This suggests that vascular structural abnormalities may be relatively refractory to \(K_{\text{ATP}} \) inhibition, but that reversal of conduit vessel structural remodeling is not required to reverse cardiac remodeling.

High-dose glibenclamide induces only transient hypoglycemia in mice. Glibenclamide is used clinically to treat diabetes, due to its inhibitory action on pancreatic Kir6.2/SUR1-dependent \(K_{\text{ATP}} \) channels (which exhibit markedly higher sensitivity than cardiovascular Kir6.1/SUR2 channels) (20). High doses, as required to reverse CS
cardiovascular remodeling, will therefore also unavoidably inhibit pancreatic K₁₉₉₉ channels and are thus naïvely predicted to increase insulin secretion and lower blood glucose (BG), a potentially important side effect that could limit clinical utility. As expected, fed BG was not different between WT and SUR²⁺/⁻ mouse prior to pellet implantation (Figure 3A) and both low- and high-dose glibenclamide indeed significantly lowered BG on day 1 after implantation. However, BG returned to normal by approximately day 2 (Figure 3B–E). Moreover, fasted BG was normal in mice that had received high-dose glibenclamide for over 30 days — evidence of long-term glycemic stability (Figure 3F). Transient, spontaneously resolving, hypoglycemic effects of chronic glibenclamide have been demonstrated before, and are explained by chronic down-regulation of insulin secretion with continued K₁₉₉₉-inhibition (21). Consistent with this, a mild glucose intolerance phenotype was observed in high-dose-treated WT and SUR²⁺/⁻ mice (Figure 3, G and H). Notably, in a single human CS case thus far treated with glibenclamide, transient hypoglycemia only was also observed at initiation of glibenclamide treatment or dose escalation (22), and thus chronic hypoglycemia may not prove to be a significant complication for glibenclamide therapy in patients with CS.

Glibenclamide-induced correction of low blood pressure in Kir6.1²⁺/²⁺ mutant mice. Although the vast majority of patients with CS carry mutations in ABC9 (SUR2), there are patients with mutations in the pore-forming Kir6.1 (KCNJ8) subunit. To examine the potential for glibenclamide therapy in such patients, we also

Figure 2. Glibenclamide reverses cardiac hypertrophy in SUR²⁺/⁻ mice. (A) Left: Representative hearts from placebo-implanted WT (black), placebo-implanted SUR²⁺/⁻ (orange), and approximately 19 mg/kg/day glibenclamide pellet implanted SUR²⁺/⁻ (brown) mice. Right: Summary of heart size (weight normalized to tibia length; HW/TL) for WT and SUR²⁺/⁻ mice implanted with either placebo pellets (Glib = 0), or pellets releasing approximately 1 mg/kg/day and approximately 19 mg/kg/day. (B) Summary of MAP in anesthetized placebo-pellet (Glib = 0) and approximately 19 mg/kg/day glibenclamide pellet-implanted WT and SUR²⁺/⁻ mice. In all experiments, pellets were implanted at 8 weeks of age, and phenotypes were assessed 4 weeks later. (C) Systemic vascular resistance (SVR) and (D) cardiac index in placebo-implanted WT and placebo- or glibenclamide pellet-implanted SUR²⁺/⁻ mice. (E) Gomori-stained left ventricular free wall sections. Scale bars: 500 μm. (F) Ejection fraction of placebo-implanted WT and placebo- or glibenclamide pellet-implanted SUR²⁺/⁻ mice. Cardiac function, compliance and coronary blood flow measurements from (G) placebo-implanted or approximately 19 mg/kg/day glibenclamide pellet-implanted WT and SUR²⁺/⁻ mice, or (H) WT, SUR²⁺/⁻, and SMGN²⁺/⁻ mice. Individual data points are presented as open circles; bars show mean ± SEM. Statistical significance was determined by 1-way ANOVA (A–F) and 2-way ANOVA (G and H) with subsequent post hoc Tukey’s test for pairwise comparison. *P < 0.05, **P < 0.01 from pairwise post hoc Tukey’s test. For G and H, color-coded statistical significance indicators are shown for comparison with placebo-implanted WT mice (black).
implanted CS model Kir6.1][V65M] knockin mice (Kir6.1][V65M]) (19) with high-dose glibenclamide pellets. This resulted in a significant although incomplete (approximately 13 mmHg) improvement of the otherwise severe hypotensive phenotype and an incomplete effect on heart size (Figure 4, A and B). The Kir6.1][V65M] mutation results in a drastic GoF of KATP channels and causes severe CS features in humans (7, 8, 19). Unlike the SUR2A[478V] mutation, which does not significantly affect glibenclamide sensitivity (23), the Kir6.1][V65M] mutation markedly decreases glibenclamide inhibition in recombinant channels (8), potentially explaining the incomplete reversal of CV abnormalities. Alternatively, incomplete reversal might reflect the more severe phenotype requiring longer administration times for reversal. In either case, the also prove useful for correction of PDA of various etiologies, an application that should be the subject of future study. Increased VSM KATP channel expression has been reported in septic shock, and previous animal studies suggested that KATP inhibition may also prove beneficial in treating endotoxic hypotension (28, 29), although acute glibenclamide treatment failed to reverse hypotensive shock in humans, despite inducing hypoglycemia (30, 31). Such studies illustrate the different sensitivity of pancreatic and cardiovascular KATP channels, and raise the question whether longer term and higher dose treatment might be necessary and appropriate for cardiovascular applications.

Potential adverse effects of high-dose glibenclamide, including actions in skeletal and cardiac muscle, as well as the drug
A

![Graph A](image1)

B

![Graph B](image2)

Figure 4. Partial reversal of cardiovascular features by glibenclamide in Kir6.1^{−/−} mice. (A) Summary of mean arterial pressure (MAP) in anesthetized placebo-implanted (Glib = 0) and approximately 19 mg/kg/day glibenclamide pellet-implanted WT and Kir6.1^{−/−} mice. (B) Summary of heart rate (HR) measured in WT and Kir6.1^{−/−} mice implanted with either placebo pellets (Glib = 0) or pellets releasing approximately 19 mg/kg/day. For all figures, individual data points are represented as open circles, bars show mean ± SEM. Statistical significance was determined by 1-way ANOVA and post hoc Tukey’s test for pairwise comparison. **P** < 0.01 from pairwise post hoc Tukey’s test.

sensitivity of specific CS mutations, require further study, and ideal therapy for CS may ultimately require an agent with much improved selectivity or potency for VSM Kir6.1/SUR2B channels. However, there is immediate need for a targeted therapy for CS, and the present findings clearly demonstrate the in vivo potential of glibenclamide for correcting CS cardiovascular abnormalities. Moreover, they suggest that the undesired glucose-lowering effects in nondiabetic animals are temporary, and may not therefore be prohibitive for the use of glibenclamide as a therapy in CS.

Methods

Mouse models. CRISPR/Cas9 genome-edited SUR2B^{−/−} and Kir6.1^{−/−} mice were previously reported (19) (see also Supplemental Methods; supplemental material available online with this article; https://doi.org/10.1172/JCI130571DS1). Dominant-negative Kir6.1-AAA mice were crossed with Cantu mice as illustrated in Figure 1A and described in detail in Supplemental Methods. Electrophysiological recordings of acutely isolated aortic smooth muscle cells, blood pressure measurements in anesthetized mice, echocardiographic analysis and heart weight measurements, Gomori stain, vascular compliance, and blood glucose measurements were made as described in Supplemental Methods. Plasma glibenclamide concentrations were measured by LC-MS/MS analysis using an ion trap mass spectrometer following the method described in detail in Supplemental Methods.

Study approval. Mouse studies were performed in compliance with the standards for the care and use of animal subjects defined in the NIH Guide for the Care and Use of Laboratory Animals and were reviewed and approved by the Washington University Institutional Animal Care and Use Committee.

Statistics. Statistical analysis was carried out with Microsoft Excel (Real Statistics Resource Pack software; www.real-statistics.com). Significance values were calculated using 1-way ANOVA and subsequent post hoc Tukey’s test for pairwise comparison. For carotid compliance measurements, where groups with 2 variables were compared, 2-way ANOVA with post hoc Tukey’s test was performed using GraphPad Prism 8 for OS X. A P value of less than 0.05 was considered significant. All values are expressed as mean ± SEM.

Acknowledgments

This work was supported by NIH R35 HL140024 (to CGN). CM was supported by American Heart Association Postdoctoral Fellowship 19POST34380407. CMH was supported by NIH K08 HL135400 and Pilot and Feasibility grant CIMED-18-04. The Kir6.1-AAA mice were provided by William A. Coetzee (New York University, New York, New York).

Address correspondence to: Colin G. Nichols, Box 8228, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA. Email: cnichols@wustl.edu.

YHI’s present address is: Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.

plays a major role in blood pressure control. Hypertens. 2014;64(3):525–529.

