2005

Evidence for specificity of transmission of alcohol and nicotine dependence in an offspring of twins sample

Heather E. Volk
Jeffrey F. Scherrer
Kathleen K. Bucholz
Andrew C. Heath
Theodore Jacob

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/guzeposter2005

Part of the Medicine and Health Sciences Commons

Recommended Citation

This Poster is brought to you for free and open access by the 2005: Alcoholism and Comorbidity at Digital Commons@Becker. It has been accepted for inclusion in Posters by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Evidence for Specificity of Transmission of Alcohol and Nicotine Dependence in an Offspring of Twins Sample

Heather E Volk MPH, Jeffrey F Scherrerer PhD, Kathleen K Buchloz PhD, Andrew C Heath DPhil, Theodore Jacob PhD, William R True, PhD MPH
Background

- Alcohol dependence (AD) and nicotine dependence (ND) frequently co-occur
 - 22.8% of ND have alcohol use disorder\(^1\)
 - 34.5% with alcohol use disorder are ND\(^1\)
- AD and ND are both influenced by genes
 - 50-60% of risk for AD\(^2\text{-}^4\)
 - 30-60% of risk for smoking initiation\(^2,^5\)
 - 58-74% of risk for smoking persistence\(^2,^6\)
Background

• AD and ND share genetic vulnerability
 – Genetic Correlation (r^A)
 \[= 0.68 \text{ (95\%CI 0.61-0.74)} \]
 – Unique Environmental Correlation (r^E)
 \[= 0.23 \text{ (95\%CI 0.14-0.32)}^2 \]

• However, this overlap is incomplete. Risk may still be transmitted for AD only or ND only as well as for both substances together.

• Factors such as gender, age, and externalizing or internalizing disorders may moderate risk
Objective

- To test for specificity of transmission of AD and ND extending existing results on overlap of AD and ND using an offspring of twins design.
Methods (sample)

• Data from 2000-2002 study of adolescent and adult offspring of twin fathers sampled from the Vietnam Era Twin Registry
 – 730 twin fathers, 904 biologic and/or rearing mothers, 1,356 offspring
 – Lifetime diagnoses derived from structured diagnostic interview
Methods (measures)

- Twin father’s lifetime AD and ND diagnoses
- Offspring AD, ND, conduct disorder, panic attack, major depression, generalized anxiety disorder
- Maternal report of offspring attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD)
Methods (measures)

• Offspring disorders comorbid with AD or ND collapsed
 – Externalizing disorders: conduct disorder, ADHD, ODD
 – Internalizing disorders: panic attack, major depression, generalized anxiety disorder
Analysis

• Multinomial logistic regression to predict risk for comorbid AD and ND, AD only, or ND only

• 4 group offspring of twin design created for paternal AD and ND separately
 – Group 1: MZ/DZ affected
 – Group 2: MZ unaffected, cotwin affected
 – Group 3: DZ unaffected, cotwin affected
 – Group 4: MZ/DZ unaffected
Analysis

• Repeated multinomial logistic regression to examine effect of offspring gender, age, comorbid externalizing and internalizing psychopathology
Results

Table 1: Multinominal Logistic Regression to Examine the Co-transmission of AD and ND due to Genetic Factors

<table>
<thead>
<tr>
<th></th>
<th>Comorbid AD and ND</th>
<th>AD</th>
<th>ND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=116</td>
<td>N=100</td>
<td>N=196</td>
</tr>
<tr>
<td>MZ/DZ AD (Group 1)</td>
<td>1.79 (1.10-2.94)</td>
<td>2.09 (1.20-3.64)</td>
<td>1.06 (0.70-1.62)</td>
</tr>
<tr>
<td>MZ unaffected, cotwin AD (Group 2)</td>
<td>1.01 (0.40-2.57)</td>
<td>2.22 (1.08-4.53)</td>
<td>0.94 (0.50-1.78)</td>
</tr>
<tr>
<td>DZ unaffected, cotwin AD (Group 3)</td>
<td>1.25 (0.61-2.56)</td>
<td>1.64 (0.74-3.60)</td>
<td>0.69 (0.36-1.34)</td>
</tr>
<tr>
<td>MZ/DZ ND (Group 1)</td>
<td>1.93 (1.10-3.37)</td>
<td>0.79 (0.42-1.46)</td>
<td>2.56 (1.62-4.06)</td>
</tr>
<tr>
<td>MZ unaffected, cotwin ND (Group 2)</td>
<td>1.68 (0.72-3.93)</td>
<td>0.99 (0.50-1.98)</td>
<td>2.21 (1.25-3.92)</td>
</tr>
<tr>
<td>DZ unaffected, cotwin ND (Group 3)</td>
<td>1.65 (0.91-2.99)</td>
<td>0.83 (0.44-1.58)</td>
<td>1.33 (0.78-2.27)</td>
</tr>
</tbody>
</table>
Table 2: Multinomial Logistic Regression to Examine the Co-transmission of AD and ND due to Genetic Factors Adjusting for Covariates

<table>
<thead>
<tr>
<th></th>
<th>Comorbid AD and ND</th>
<th>AD</th>
<th>ND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=116</td>
<td>N=100</td>
<td>N=196</td>
</tr>
<tr>
<td>MZ/DZ AD (Group 1)</td>
<td>1.54 (0.93-2.56)</td>
<td>2.07 (1.17-3.68)</td>
<td>0.96 (0.63-1.47)</td>
</tr>
<tr>
<td>MZ unaffected, cotwin AD (Group 2)</td>
<td>0.82 (0.32-2.12)</td>
<td>2.24 (1.09-4.63)</td>
<td>0.82 (0.42-1.63)</td>
</tr>
<tr>
<td>DZ unaffected, cotwin AD (Group 3)</td>
<td>1.28 (0.62-2.65)</td>
<td>1.73 (0.78-3.87)</td>
<td>0.72 (0.37-1.38)</td>
</tr>
<tr>
<td>MZ/DZ ND (Group 1)</td>
<td>1.81 (1.01-3.25)</td>
<td>0.77 (0.42-1.44)</td>
<td>2.47 (1.57-3.90)</td>
</tr>
<tr>
<td>MZ unaffected, cotwin ND (Group 2)</td>
<td>1.49 (0.63-3.52)</td>
<td>0.97 (0.48-1.98)</td>
<td>2.04 (1.13-3.70)</td>
</tr>
<tr>
<td>DZ unaffected, cotwin ND (Group 3)</td>
<td>1.32 (0.71-2.44)</td>
<td>0.79 (0.41-1.53)</td>
<td>1.14 (0.79-1.64)</td>
</tr>
<tr>
<td>Male Gender</td>
<td>1.10 (0.70-1.75)</td>
<td>2.45 (1.53-3.92)</td>
<td>1.14 (0.79-1.64)</td>
</tr>
<tr>
<td>Household Income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>$50K/year</td>
<td>0.74 (0.45-1.23)</td>
<td>1.03 (0.62-1.72)</td>
<td>0.88 (0.59-1.32)</td>
</tr>
<tr>
<td>Age ≥18 years</td>
<td>3.14 (1.81-5.46)</td>
<td>10.22 (4.82-21.64)</td>
<td>3.17 (2.04-4.92)</td>
</tr>
<tr>
<td>Externalizing Disorders</td>
<td>6.91 (4.33-11.02)</td>
<td>1.95 (1.17-3.24)</td>
<td>3.34 (2.33-4.78)</td>
</tr>
<tr>
<td>Internalizing Disorders</td>
<td>1.91 (1.21-3.02)</td>
<td>0.98 (0.52-1.81)</td>
<td>2.04 (1.39-2.99)</td>
</tr>
</tbody>
</table>
Discussion

- Paternal AD and ND are associated with offspring AD and ND, respectively
- Paternal AD and ND predict comorbid AD and ND in offspring
- Specific genetic effects exist for transmission of AD and ND despite genetic correlation between the disorders
Discussion

• After controlling for genetic factors:
 – Age \geq 18 years and externalizing psychopathology increase risk for all outcomes
 – Internalizing disorders are associated with increased risk for comorbid AD and ND and ND alone
 – Male gender is associated with increased risk for AD alone
References

