Understanding research impact

Kristi L. Holmes
Washington University School of Medicine in St. Louis

Cathy C. Sarli
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/becker_pubs

Part of the Medicine and Health Sciences Commons

Recommended Citation
https://digitalcommons.wustl.edu/becker_pubs/31

This Article is brought to you for free and open access by the Becker Medical Library at Digital Commons@Becker. It has been accepted for inclusion in Becker Library Publications and Presentations by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Across the globe, numerous kidney transplant candidates and donors are linking up in often complicated ways to facilitate more transplants through exchange programs, or swaps. The largest swap so far, which was orchestrated by the National Kidney Registry (NKR) and involved 60 lives and 30 kidneys, was described recently in The New York Times (http://www.nytimes.com/2012/02/19/health/lives-forever-linked-through-kidney-transplant-chain-124.html?_r=2). Also, in early February the NKR announced that it had facilitated its 400th exchange transplant. These efforts by the NKR and other programs could not come at a better time. Nearly 90,000 people in the United States are waiting for a kidney transplant, and many will die before a suitable organ becomes available. The shortage is expected to worsen.

Such living donor chains and simpler closed-loop paired exchanges, which involve two pairs of donors and recipients, assume that kidneys from living donors are of comparable quality and anticipated longevity. But how true is this assumption? Potential recipients often wonder, will the kidney received from a stranger—particularly an older one—be as good as a kidney donated by a loved one?

“In a proposed kidney paired donation match, if an old donor–recipient pair is matched to a young donor–recipient pair, the young recipient may feel disadvantaged and may not be will-

Antithrombotic Therapy in Patients with Chronic Kidney Disease: Is It Safe?

By Tracy Hampton

Antithrombotic therapy that inhibits blood clotting can be life-saving for individuals at high risk for cardiovascular disease or stroke. At first glance, this should apply to patients with chronic kidney disease (CKD), who are more likely to die of cardiovascular disease than of any other cause. But nonatherosclerotic conditions such as cardiac failure, sudden cardiac death, and arrhythmia are more common causes of cardiovascular events in individuals with CKD than in the general population, and the bleeding risk of antithrombotic agents may be greater among people with CKD because of impaired hemostasis.

Investigators recently published a review in the Annals of Internal Medicine on the benefits and harms of antithrombotic agents in these patients, focusing on cardiovascular events, mortality, and bleeding.

“Until now, data from studies done in the general population were extrapolated to people with chronic kidney disease,” said senior author Giovanni Strippoli, MD, PhD, who holds titles at the school of public health at the University of Sydney in Australia, the Mario Negri Sud Consortium in Italy.
Living Donor Age

Continued from page 1

Age not an issue
The investigators found that except for recipients aged 18 to 39, who benefited the most when they received kidneys from donors aged 18 to 39, donor age between 18 and 64 had a minimal effect on the survival of transplanted kidneys. Specifically, the researchers noted a difference of only 1 to 2 years in allograft half-life, with no graded association, among different donor age groups.

“Those findings show that in contrast to deceased donor transplantation, the age of a living donor has little impact on transplant survival,” Gill said. “This information should help increase participation and efficiency of living donor paired exchange programs because it alleviates patient concerns about receiving a kidney from an older aged living donor that currently limits acceptance of a proposed transplant in paired exchange programs.”

More experience is needed to determine the outcome of transplants from living donors aged 65 and older relative to younger living donors, Gill said.

In addition to expanding participation in exchange programs by blood group and tissue-incompatible donor–recipient pairs, the results may also encourage participation of more compatible donor–recipient pairs. Finally, the information should prompt exchange programs to reexamine any matching algorithms that emphasize donor–recipient age matching.

“Those findings were published by Ferrari and his colleagues. Those findings were published by Ferrari and his colleagues in 2011 in Nephrology Dialysis Transplantation. "Taken together, these findings of the two registry data are of major relevance for policy and decision making in kidney paired donation," Ferrari said. They reinforce the view that it is acceptable to ignore donor–donor or donor–recipient age differences as a scoring parameter in ranking match combinations."

Weighing options
Gill and his team also juxtaposed their results against the probabilities that wait-listed patients would receive a kidney from a deceased donor and their risk of being excluded from transplantation during the study because of death or permanent removal from the wait-list.

The probability of deceased donor transplantation after 3 years of wait-listing ranged from 21 percent to 66 percent depending on patients’ blood type and antibody levels, whereas the probability of being excluded from transplantation ranged from 6 percent to 27 percent by age, race, and type of kidney disease. Gill noted that when patients consider these probabilities, many will likely find that participating in living donor paired exchanges—and possibly receiving a kidney from an older donor—is a better option than continuing to wait for a deceased donor transplant.

Yet the study included relatively few living donors aged 60 and older, the authors said, noting that there may be certain patient subgroups who tolerate dialysis relatively well, so that waiting while they continue to receive dialysis would be a reasonable consideration. Also, they were unable to evaluate the effect of other important donor factors that may affect transplant survival and confound the results, including predonation kidney function, donor blood pressure, and diabetes in the donor.

The authors stressed that their find-
Kidneys are the most commonly transplanted organ, and now with the advent of transplant chains that use several sets of matched pairs, the numbers of these logistically challenging operations are poised to rise to levels unanticipated only a few years ago. At the same time, increased scrutiny of chain transplants, which rely on living donors, is emerging from all corners of the industry.

A recent conference of national and regional kidney transplant partners represented a first attempt to agree on the direction of their field. Insurers and representatives from several registries and the large federally run United Network for Organ Sharing (UNOS) also attended. UNOS manages the national transplant waiting list and maintains the database that has all organ transplant data, from every transplant that happens in the United States.

Held in late March in Herndon, VA, the Consensus Conference on Kidney Paired Donation had an ambitious goal—to seek consensus among the 70 participants on ways to increase the volume of transplants that involve kidney paired donation (KPD). The genesis of the conference was the idea that KPD is the most effective approach to recruit a substantial pool of high-quality kidneys from healthy living donors. These donors would not have volunteered otherwise because their kidneys weren’t a compatible match for their family member or loved one. Despite the need and opportunities for this type of donation, KPD remains an often unused option.

An announcement from the University of California, San Francisco—where the conference’s lead organizer Sandy Feng, MD, PhD, is a transplant surgeon—described the first consensus meeting and noted that “the emergence of multiple KPD programs with diverse approaches and processes attests to a lack of consensus and how to maximize the benefit and minimize the risk of KPD.”

While the participants expressed a desire for a unified registry that would provide a centralized system for storing and accessing data about donors and recipients, they ultimately could not agree over how this unifying effort would take place, according to Kevin Sack, who reported on the conference for The New York Times.

One mathematician from the U.S. Naval Academy, Sommer Gentry, who had been working on donation models, wanted to eliminate barriers to a national registry. “With two pools of 100, you get fewer opportunities than with one pool of 200,” to match donors to recipients.

Sack noted that Feng was concerned that unifying all of the current registries into one system might stifle the innovations used by successful registries like the National Kidney Registry. “Maybe we can have different operations with common allocation methods and principles, [without complete unification of systems],” Feng said.
Antiplatelet Therapy

Continued from page 3

and Diaverum in Sweden. “Previous re-
search from our group and others has
shown that such extrapolations could be
very dangerous, and interventions that
may be very good in the general pop-
ulation may have no effect or even be
harmful in people with chronic kidney
disease

Pay ing particular attention to pa-
tients with CKD while conducting cli-
nical trials will only become more impor-
tant. Approximately 10 percent to 15 per-
cent of the adult population world-
wide have the disease, and its prevalence
is on the rise because of increasing rates
of diabetes and obesity.

Analyzing available data

Mining Embase and Cochrane databases
es from 1980 through November 2011 with
out language restriction, Strippoli and
his colleagues selected randomized trials
that included adults with CKD and compared antiplatelet agents with standard care, placebo, or no treatment.

“Nephrology is lagging behind other
disciplines of internal medicine when it
comes to randomized trials, and a strong
effort is needed to do more trials and to
summarize existing knowl-
edge from the few small existing trials
that have been published,” said Strippoli.

Many of the trials in the analysis were
not performed to study issues specifical-
ly in persons with CKD. They were
considered at high risk for subsequent
vessel closure. All data for these trials
were post hoc analyses for subgroups of
participants with CKD from larger trials.
The trials provided data for glycoprotein
Ib/IIa inhibitors (abciximab, eptifibatide,
or tirofiban) or clopidogrel (two trials, 4498 partici-
pants), and all involved coadministra-
tion of aspirin with or without heparin.
The median follow-up time was 12 months.

Another 31 trials provided data
on 11,701 persons with stable or
no cardiovascular disease who received an-
tiplatelet therapy. Twelve trials studied
antiplatelet effects on mortality, pro-
gression of kidney disease, or safety
in patients who had glomerulonephritis,
diabetic nephropathy, or an impaired
gFR regardless of cause. The agents
administered included aspirin, dipry-
damol, aspirin and diprydamole, or
a thienopyridine (clopidogrel or ticlopi-
dine), and the median follow-up time
was 12 months. Seventeen of the trials
provided shorter-term data (median of 6
months of follow-up) for evaluating
antiplatelet treatments in persons who
were receiving or would soon require
therapy in patients with CKD is of low or
very low quality, with considerable vari-
ation in trial duration, heterogeneity in
the definitions and assessment of bleed-
ing outcomes, reliance on subgroup data
from major trials, and substantial meth-
odologic limitations in data for patients
with stable cardiovascular disease.

The researchers reported low-quality
evidence that in people with acute coro-
nary syndromes, glycoprotein IIb/IIIa inhibitor
or clopidogrel plus standard
care had little or no effect compared with
standard care alone on all-cause or car-
diovascular mortality or on myocardial
infarction, but the treatments increased
serious bleeding by up to 40 percent.

Also according to generally low-quality
evidence, antiplatelet therapy prevented
myocardial infarction (lowering the risk
by about 34 percent) but caused uncer-
tain effects on mortality and increased
minor bleeding by approximately 70 per-
cent compared with placebo or no treat-
ment in persons with stable or no cardio-
vascular disease.

These findings indicate that any bene-
fits of antiplatelet therapy for people
with CKD are uncertain and are potentially
outweighed by bleeding hazards.

“All in all, these drugs should be used with
care and attention, as all doctors do,
and we should always think before we
prescribe,” said Strippoli. Also, he and
his coauthors noted that many patients
would not be likely to accept the risk for
major bleeding to reduce their risk for
myocardial infarction without proven
reductions in death or the need for coro-
nary revascularization.

“This systematic review and meta-
analyses primarily highlight the rather
limited evidence from existing rand-
omized trials about the efficacy and
safety of antiplatelet agents for preventing
vascular disease and death across the
spectrum of chronic kidney disease and
in those receiving dialysis or a renal
transplant,” said Alan Go, MD, who is
the director of the comprehensive clini-
cal research unit and the regional medical
director for clinical trials at Kaiser Perma-
nente Northern California and who was
not involved with the research.

Given the low quality of the avail-
able evidence, the investigators advocate
for specific trials evaluating antiplatelet
therapies, including newer agents, in
individuals with CKD and coexisting acute
or stable cardiovascular disease. They also
note that no data are currently available
on antiplatelet use in dialysis patients or
kidney transplant recipients who have
acute coronary syndromes or require cor-
nary revascularization.

“Given the risks of bleeding associ-
ated with these agents, additional studies
are needed to delineate the net clinical
benefit or harm at different levels of renal
function through randomized trials as
well as studies done in large, diverse clini-
cal practice populations that are more
representative,” said Go.
INDICATION AND LIMITATIONS OF USE
OMONTYS® (peginesatide) Injection is indicated for the treatment of anemia due to chronic kidney disease (CKD) in adult patients on dialysis. OMONTYS is not indicated and is not recommended for use in patients with CKD not on dialysis, in patients receiving treatment for cancer and whose anemia is not due to CKD, or as a substitute for red blood cell (RBC) transfusions in patients who require immediate correction of anemia. OMONTYS has not been shown to improve symptoms, physical functioning, or health-related quality of life.

IMPORTANT SAFETY INFORMATION

WARNING: ESAs INCREASE THE RISK OF DEATH, MYOCARDIAL INFARCTION, STROKE, VENOUS THROMBOEMBOLISM, THROMBOSIS OF VASCULAR ACCESS AND TUMOR PROGRESSION OR RECURRENT

Chronic Kidney Disease:
- In controlled trials, patients experienced greater risks for death, serious adverse cardiovascular reactions, and stroke when administered erythropoiesis-stimulating agents (ESAs) to target a hemoglobin level of greater than 11 g/dL.
- No trial has identified a hemoglobin target level, ESA dose, or dosing strategy that does not increase these risks.
- Use the lowest OMONTYS dose sufficient to reduce the need for red blood cell (RBC) transfusions.

Contraindications
OMONTYS is contraindicated in patients with uncontrolled hypertension.

Warnings and Precautions
Increased mortality, myocardial infarction, stroke, and thromboembolism:
- Using ESAs to target a hemoglobin level of greater than 11 g/dL increases the risk of serious adverse cardiovascular reactions and has not been shown to provide additional benefit. Use caution in patients with coexistent cardiovascular disease and stroke. Patients with CKD and an insufficient hemoglobin response to ESA therapy may be at even greater risk for cardiovascular reactions and mortality than other patients. A rate of hemoglobin rise of >1 g/dL over 2 weeks may contribute to these risks.

- In controlled clinical trials of ESAs in patients with cancer, increased risk for death and serious adverse cardiovascular reactions was observed. These adverse reactions included myocardial infarction and stroke.
- In controlled clinical trials of ESAs, ESAs increased the risk of death in patients undergoing coronary artery bypass graft surgery (CABG) and deep venous thrombosis (DVT) in patients undergoing orthopedic procedures.
- In 2 trials of OMONTYS, patients with CKD not on dialysis experienced increased specific cardiovascular events.

Increased mortality and/or increased risk of tumor progression or recurrence in patients with cancer:
- The safety and efficacy of OMONTYS have not been established for use in patients with anemia due to cancer chemotherapy. OMONTYS is not indicated in patients with cancer receiving chemotherapy.

Hypertension: OMONTYS is contraindicated in patients with uncontrolled hypertension. Appropriately control hypertension prior to initiation of and during treatment with OMONTYS. Reduce or withhold OMONTYS if blood pressure becomes difficult to control. Advise patients of the importance of compliance with antihypertensive therapy and dietary restrictions.

Lack or loss of response to OMONTYS: For lack or loss of hemoglobin response to OMONTYS, initiate a search for causative factors. If typical causes of lack or loss of hemoglobin response are excluded, evaluate for antibodies to peginesatide.

Dialysis management: Patients receiving OMONTYS may require increased anticoagulation with heparin to prevent clotting of the extracorporeal circuit during hemodialysis.

Laboratory monitoring: Evaluate transferrin saturation and serum ferritin prior to and during OMONTYS treatment. Administer supplemental iron therapy when serum ferritin is less than 100 mcg/L or when serum transferrin saturation is less than 20%.

Adverse reactions
The most common adverse reactions in clinical studies in patients with CKD on dialysis treated with OMONTYS were dyspnea, diarrhea, nausea, cough, and arteriovenous fistula site complication.

Please see accompanying Brief Summary.

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit www.FDA.gov/medwatch or call 1-800-FDA-1088.
Kidney disease affects millions in the United States across all populations, but it is more common among minorities. African Americans, Hispanics, Pacific Islanders, and Native Americans face a disproportionately increased risk for developing kidney disease.

Broadening knowledge about the disparities in kidney care that minorities confront is essential to resolving those disparities. On April 19, 2012, the American Society of Nephrology (ASN), Dialysis Patient Citizens (DPC), and the National Urban League led a congressional briefing on kidney health disparities. Maria Cristina Arce, MD, and Neil Powe, MD, addressed members of Congress and Capitol Hill staffers about this critical issue on ASN’s behalf.

A nephrology fellow at Stanford University School of Medicine, Arce presented information on kidney disease in the Hispanic population. She noted that Hispanic ethnicity is associated with a higher risk of end stage renal disease (ESRD) compared with whites—an increase not explained by higher prevalence of diabetes or by diabetes severity. In addition, a higher number of younger Hispanics are starting dialysis, possibly due to worsening rates of obesity, earlier onset of diabetes and hypertension, and faster progression of kidney disease. Hispanics are 15 percent less likely to access arteriovenous fistula for their first hemodialysis session, Arce said.

Powe spoke to the audience at the congressional briefing about the many factors that contribute to a rate of kidney failure in minorities that is up to four times greater than in whites. Chief of Medicine at San Francisco General Hospital and Vice-Chair of Medicine at the University of California San Francisco, Powe noted that kidney disease occurs more often in minorities and starts earlier. Socioeconomic status, lifestyle and quality of care explain 44 percent of the threefold excess risk of chronic kidney disease (CKD) in African Americans compared to whites. African Americans are also much less likely to get transplants or to be placed on the transplant waiting list, said Powe. His presentation echoed Arce’s findings that minorities in the United States are referred to nephrologists much later than whites.

Powe emphasized to lawmakers the current and future opportunities for the federal government to address and resolve disparities in kidney care in the United States and worldwide, including support of Senate bill 2163 that promotes research regarding disparities and access to care. ASN encourages members to contact your members of Congress to support this bill at http://capwiz.com/asn/home/

ASN Cosponsors Congressional Briefing on Racial Disparities in Kidney Disease

K

idney disease affects millions in the United States across all populations, but it is more common among minorities. African Americans, Hispanics, Pacific Islanders, and Native Americans face a disproportionately increased risk for developing kidney disease.

Broadening knowledge about the disparities in kidney care that minorities confront is essential to resolving those disparities. On April 19, 2012, the American Society of Nephrology (ASN), Dialysis Patient Citizens (DPC), and the National Urban League led a congressional briefing on kidney health disparities. Maria Cristina Arce, MD, and Neil Powe, MD, addressed members of Congress and Capitol Hill staffers about this critical issue on ASN’s behalf.

A nephrology fellow at Stanford University School of Medicine, Arce presented information on kidney disease in the Hispanic population. She noted that Hispanic ethnicity is associated with a higher risk of end stage renal disease (ESRD) compared with whites—an increase not explained by higher prevalence of diabetes or by diabetes severity. In addition, a higher number of younger Hispanics are starting dialysis, possibly due to worsening rates of obesity, earlier onset of diabetes and hypertension, and faster progression of kidney disease. Hispanics are 15 percent less likely to access arteriovenous fistula for their first hemodialysis session, Arce said.

Powe spoke to the audience at the congressional briefing about the many factors that contribute to a rate of kidney failure in minorities that is up to four times greater than in whites. Chief of Medicine at San Francisco General Hospital and Vice-Chair of Medicine at the University of California San Francisco, Powe noted that kidney disease occurs more often in minorities and starts earlier. Socioeconomic status, lifestyle and quality of care explain 44 percent of the threefold excess risk of chronic kidney disease (CKD) in African Americans compared to whites. African Americans are also much less likely to get transplants or to be placed on the transplant waiting list, said Powe. His presentation echoed Arce’s findings that minorities in the United States are referred to nephrologists much later than whites.

Powe emphasized to lawmakers the current and future opportunities for the federal government to address and resolve disparities in kidney care in the United States and worldwide, including support of Senate bill 2163 that promotes research regarding disparities and access to care. ASN encourages members to contact your members of Congress to support this bill at http://capwiz.com/asn/home/
Kidney Disease and Minorities in the United States

- Minorities are more likely to receive a late evaluation by a nephrologist
- Minorities in the United States with CKD are more likely to have uncontrolled blood pressure
- African Americans with kidney disease are 3.6 times more likely to progress to kidney failure than whites, and six times more likely to develop kidney failure related to hypertension
- Hispanics and Native Americans are approximately two times more likely to progress to kidney failure than whites
- African Americans are more likely to receive hemodialysis, and less likely to receive peritoneal dialysis and a transplant
- African Americans are less likely to be waitlisted for and receive a kidney transplant
- Research, education, and clinical care focused on prevention can help eliminate disparities in kidney disease

of ESA therapy. Following initiation of therapy and after each dose adjustment, monitor hemoglobin every 2 weeks until the hemoglobin is stable and sufficient to minimize the need for RBC transfusion. Thereafter, hemoglobin should be monitored at least monthly provided hemoglobin levels remain stable.

ADVERSE REACTIONS

The following serious adverse reactions observed during clinical trials with OMONTYS are discussed in greater detail in other sections of this labeling:

- Increased Mortality, Myocardial Infarction, Stroke, and Thromboembolism (see Warnings and Precautions)
- Hypersensitivity (see Warnings and Precautions)

Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reactions observed in the clinical studies of OMONTYS cannot be directly compared to rates in the clinical trials of other drugs and may not reflect the rates observed in practice.

Patients with Chronic Kidney Disease

Adverse reactions were determined based on pooled data from two active controlled studies of 1066 dialysis patients treated with OMONTYS and 542 treated with epoetin, including 836 exposed for at least 6 months and 825 exposed for greater than one year to OMONTYS. The population for OMONTYS was 20 to 93 years of age, 58.5% male, and the percentages of African Americans, Black (including African Americans), and Asian patients were 57.8%, 37.4%, and 3.1%, respectively. The median weight adjusted dose of OMONTYS was 0.07 mg/kg and 113 U/week/kg of epoetin.

Table 3 summarizes the most frequent adverse reactions (≥ 10%) in dialysis patients treated with OMONTYS.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Adverse Reactions Occurring in ≥10% of Dialysis Patients Treated with OMONTYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse Reactions</td>
<td>Dialysis Patients (N = 1066) Treated with OMONTYS</td>
</tr>
<tr>
<td>Gastrointestinal Disorders</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>18.4%</td>
</tr>
<tr>
<td>Nausea</td>
<td>17.4%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>15.3%</td>
</tr>
<tr>
<td>Respiratory, Thoracic and Mediastinal Disorders</td>
<td></td>
</tr>
<tr>
<td>Dyspnea</td>
<td>18.4%</td>
</tr>
<tr>
<td>Cough</td>
<td>16.0%</td>
</tr>
<tr>
<td>Upper Respiratory Infection and Bronchitis Complications</td>
<td></td>
</tr>
<tr>
<td>Sinusitis</td>
<td>35.8%</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>22.3%</td>
</tr>
<tr>
<td>Bronchopneumonia</td>
<td>10.9%</td>
</tr>
<tr>
<td>Vascular Disorders</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>14.2%</td>
</tr>
<tr>
<td>Hypotension</td>
<td>13.2%</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td></td>
</tr>
<tr>
<td>Postprandial Bradycardia</td>
<td>7.8%</td>
</tr>
</tbody>
</table>

Seizures have occurred in patients participating in OMONTYS clinical studies. During the first seven months following initiation of OMONTYS, blood pressure and the presence of premonitory neurologic symptoms should be monitored closely. Advise patients to contact their healthcare practitioner for new-onset seizures, premonitory symptoms, or change in seizure frequency. Adverse reactions have been reported in patients treated with OMONTYS. Discontinue OMONTYS and administer appropriate therapy if a serious allergic, anaphylactic or anaphylaxis-related reaction occurs.

Immunogenicity

Of the 2357 patients tested, 29 (1.2%) had detectable levels of peginesatide-specific binding antibodies. There was a higher incidence of peginesatide-specific binding antibodies in patients dosed subcutaneously (1.9%) compared to those dosed intravenously (0.7%). Peginesatide neutralizing antibodies were detected in vitro using a cell-based functional assay in 21% of these patients (0.9%). In approximately half of all antibody-positive patients, the presence of antibodies was associated with declining hemoglobin levels, the requirement for increased doses of OMONTYS to maintain hemoglobin levels, and/or transition for anemia of CKD. No cases of pure red cell aplasia (PRCA) developed in patients receiving OMONTYS during clinical trials.

DRUG INTERACTIONS

No formal drug/drug interaction studies have been performed. Peginesatide does not bind to serum albumin or lipoproteins as demonstrated in in vitro protein binding studies in rat, monkey, and human sera. In vitro studies conducted with human hepatocytes or microsomes have shown no potential for peginesatide to induce or inhibit CYP450 enzymes.

USE IN SPECIFIC POPULATIONS

Pregnancy

Pregnancy Category C

There are no adequate and well-controlled studies in pregnant women. Peginesatide was teratogenic and caused embryofetal lethality when administered to pregnant animals at doses and/or exposures that resulted in comparable embryofetal effects in humans following intravenous administration at a dose of 0.35 mg/kg in patients on dialysis. In a separate embryofetal developmental study in rats, reduced fetal weight and reduced ossification of sternebrae and metatarsals, and reduced ossification of some bones. Embryofetal lethality was evident in rats at peginesatide doses of ≥ 1 mg/kg and the malformations (clef palate and sternoschisis, and variations in blood vessels) were mostly evident at doses of ≥ 10 mg/kg. The dose of 1 mg/kg results in exposures (AUC) comparable to those in humans after intravenous administration at a dose of 0.35 mg/kg in patients on dialysis. In a separate embryofetal developmental study in rats, reduced fetal weight and delayed ossification in rabbits were observed at ≥ 0.5 mg/kg/dose of peginesatide. In a separate embryofetal developmental study in rats, adverse findings were observed at lower doses and included increased incidence of fused sternebrae at 0.25 mg/kg. The effects in rabbits were observed at doses lower (5% - 10%) than the dose of 0.35 mg/kg in patients. Nursing Mothers

It is not known whether peginesatide is excreted in human milk. Because many drugs are excreted into human milk, caution should be exercised when OMONTYS is administered to a nursing woman.

Pediatric Use

The safety and efficacy of OMONTYS in pediatric patients have not been established.

Geriatric Use

Of the total number of dialysis patients in Phase 3 clinical studies of OMONTYS, 32.5% were age 65 and over, while 13% were age 75 and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects.

OVERDOSE

OMONTYS overlerting can elevate hemoglobin levels above the desired level, which should be managed with discontinuation or reduction of OMONTYS, dosage and/or with phlebotomy, as clinically indicated. Cases of severe hyperviscosity have been observed following overdose with ESA [see Warnings and Precautions].

PATIENT COUNSELING INFORMATION

See FDA-approved patient labeling (Medication Guide).

Marketed by:

Takeda Pharmaceuticals America, Inc.

Palo Alto, CA 94304

Distributed and Marketed by:

Takeda Pharmaceuticals America, Inc.

Deerfield, IL 60015

For more detailed information, see the full prescribing information for OMONTYS at www.takeda.com

OMONTYS is a trademark of Affymax, Inc. registered in the U.S. Patent and Trademark Office and used under license by Takeda Pharmaceuticals America, Inc. All other trademarks are the property of their respective owners.

©2012 Takeda Pharmaceuticals America, Inc.

March 2012

PREG/06 R1

03-12-00027-A; DSG-00057

Renal Quality Measures Endorsed

Twelve quality measures aimed at improving care for patients with kidney disease were recently endorsed by the National Quality Forum (NQF). The metrics cover several areas of renal care, including anemia, dialysis adequacy, and vascular access. “These measures will help ensure renal patients receive safe, high-quality, and compassionate care throughout the course of treatment,” said the president and CEO of NQF, Janet Corrigan, Ph.D, MBA.

Thirty-three possible measures for renal care were evaluated and then narrowed to the 12 endorsed by the NQF board of directors. Three new measures—for anemia and cardiovascular disease in patients with kidney disease—were added to the nine metrics previously endorsed by NQF.

The NQF renal quality measures pertain to aspects of care for patients with chronic kidney disease, end stage renal disease, and those undergoing dialysis. They include the serum phosphorus concentration in dialysis patients, metrics targeted at reducing the use of catheters and increasing the use of arteriovenous fistulas in vascular access for hemodialysis, and a risk-adjusted standardized mortality ratio for dialysis facilities.

Created to improve health care quality, the NQF works to find consensus on national goals for performance improvement, endorses standards for measuring performance, and promotes these goals through education and outreach. The NQF kidney disease criteria were determined in collaboration with several stakeholders including the Centers for Medicare & Medicaid Services, Kidney Care Quality Alliance, and the American Medical Association Physician Consortium for Performance Improvement.

Members of the kidney community have until May 1, 2012, to appeal any of the 12 endorsed quality measures before final approval by NQF.
The New World of Medical Tweeting

By Afreen I. Shariff, MD, and Tejas Desai, MD

Twitter has taken the world by storm. No one could have predicted that just 6 years after its inception Twitter would have 300 million users generating 300 million messages every day (1). If you are among the uninstructed, you should become familiar with how Twitter works and why it’s one of the most popular micro-blogging websites in the world.

Twitter is an open forum for sharing real-time information through “tweets.” A tweet is a short message of 140 characters or less that can convey absolutely anything to your “followers” (people who subscribe to your “feed” of tweets). And with Twitter you aren’t just limited to text. Using third-party providers, you can insert Web addresses and link to photos, videos, and more. If you like a message you can copy and paste it to your followers, or in Twitter parlance “retweet it,” which is how a message is amplified.

A recent study found that although 40 percent of messages on Twitter were pointless babble, 38 percent were conversation-based, 10 percent in-service or educational, and 2 percent were discussion. A tweet is how these impact a message’s reach. During ASN Kidney Week 2011, we identified 172 unique tweeters who produced 993 tweets.

References

How to Deal with Information Overload

By Walter Jessen, PhD, and Simon Frantz

Suffering from information overload is a frustrating and all-too-common condition today. If it isn’t hard enough to clear your overflowing email inbox, there’s the stress of staying on top of the blossoming number of journals and medical blogs in your field, papers uncovered through regular PubMed, or Medline searches, not to mention the pressure of keeping up-to-date with the latest must-use social media tools. And yet, a small number of people seem to stay afloat while the vast majority of us drown in information. What’s their secret?

Every year, the Science Online conference in North Carolina brings together some of the most savvy digital natives in science and journalism. This provided a perfect opportunity for us to pose the question in the session “Drowning in Information! How Can We Create Organization & Balance—Tools and Strategies for Managing Information Overload (Science and Otherwise)” (http://sci12.wikispaces.com/D3S2d.+Drowning+in+Information). Below are some of the main themes and tips that emerged for managing the data deluge that hits you on a daily basis.

Find signals among the noise

You don’t need to subscribe to everything! Find the information gathering tools that suit your content needs. If you regularly read journals and magazines, subscribe to their RSS feeds so that you can read them all in one place. Google Reader (www.google.com/reader) is a free, Web-based aggregator that allows you to organize, read, and search all of your favorite news sites and blogs in one place. If you like staying on top of the latest trends in a particular discipline, join Twitter (https://twitter.com) and follow people in your field and/or people that share your interests and have your news curated. If you have an iPhone or iPad, the Flipboard app (http://flipboard.com) collates content from several social media sources.

Filter, filter, filter

For many people, reading and responding to email consumes the most time during a normal business day. Take back some of the time used to manage email by using folders to stay organized. In your email client, create specific folders based on topic, task, or person. Whether it’s for must-read content or for messages you can turn to at a later date, automate the task of sorting email based on keyword(s) and/or sender. This allows you to immediately focus on the message rather than on the action of sorting. Color-code emails to distinguish family and friends from meeting requests or table of content alerts, and do the same for RSS feeds, Twitter, and other online sources. Divide information flows into folders or lists, such as “Daily reads” or “Weekend reads” or other categories that reflect your desired reading habits and content organization. For more advanced management of different services and devices, use ifttt (If This Then That; http://ifttt.com), which enables the creation of customized, automated tasks.

Organize and archive

There are numerous free online tools that can help you store your information, but three repeatedly came up in the discussion: Dropbox (https://www.dropbox.com), which allows you to share files between your work and home computer; Mendeley (http://www.mendeley.com), a reference manager that allows you to organize, read, and annotate PDF documents; and Evernote (http://www.evernote.com), a note-taking app which saves your most valuable notes, clippings, and photos on your computer and across all your mobile devices.

Get into the habit

It’s easy to give up on a tool within days, especially if it becomes stressful to deal with its backlog after a deadline, conference or, heaven forbid, a vacation. People recommended throwing yourself into a method for 30 days and see if it works before ditching it. And try regular cleansing sessions—for instance, try clearing your information streams every Sunday evening. That way, you’ll start each week without the pressure or guilt of looking at old content that you are unlikely to read anyway.

Doximity

By Sara Reistad-Long

The Journal of the American Medical Association has reported that one in nine Americans now have chronic kidney disease, and that figure is believed to be growing. At the same time many publications (among them, Kidney News) are tracking a drop in the number of nephrologists entering the field, and others have documented the strain on those already practicing as dialysis resources are stretched thin.

As awareness of kidney disease within the general population increases, so will nephrologists’ need for a safe, efficient, and Health Insurance Portability and Accountability Act (HIPAA)–compliant system for securely managing incoming referrals and discussing patient information with a treatment team. Although doctors themselves are often early adopters of information technology—81 percent now own a smartphone, for example—medicine as a whole has been slow to catch up. Email and Short Message Service (SMS), for instance, are not considered HIPAA secure, a point that the Joint Commission on Accreditation of Healthcare Organizations emphasized in November 2011 when it issued a ban on texting. This, of course, leaves physicians reliant on telephones, pagers, and faxes to communicate patient information.

Doximity was founded to address what we see as one of the next big challenges in health care—facilitating communication among physicians. Our company has been described as a kind of LinkedIn for doctors, and with nearly 30,000 physicians signed up, we’re already the largest medical professional network in the country. Enabling doctors to find and make connections in their practices and with alumni is valuable in itself, but what may be even more essential to our specific community is a private and HIPAA–secure method of exchanging information. We assign dual passwords to each user so each message is encrypted end to end. And because Doximity has been optimized for both smartphones and tablets, messages can be sent, and referrals made, from the operating room—or far from the nearest hospital—as easily as from a computer.

Equally integral to safe communication is real-name interaction. At Doximity, we verify each of our users. We believe that ensuring every member’s identity creates a framework of trust, expertise, and professionalism that reflects the effective physician interaction in the real world. The difference, of course, is that these communications are increasingly happening as ongoing written discussions across thousands of miles.

In many ways, our newest feature, iRounds, grew out of these changes. Not unlike social networking sites such as Twitter, Facebook, and Google, iRounds allows users to tap into larger communities to discuss patient cases, new research, emerging medical technologies, and more.

“Doximity offers an easy way to keep up to date on the latest news, best blog posts, and journal articles from our specialty,” said Joshua Schwimmer, MD, a nephrologist at Lenox Hill Hospital and The Mount Sinai Hospital in New York. “For example, a review article on focal segmental glomerulosclerosis (FSGS) in the New England Journal of Medicine was the basis for a discussion among multiple specialties about the presentation of FSGS, the differences between FSGS and diabetic nephropathy, and the indications for renal biopsy. The easy-access via smartphone and the Web, the user-friendly design, and the ready availability of physicians’ credentials makes it simple to collaborate and learn from your colleagues.”

Sara Reistad-Long is affiliated with Doximity.
Understanding Research Impact

By Kristi L. Holmes and Cathy C. Sarli

Understanding the true value of a scholar’s research output is no small feat. Although it’s fairly straightforward to track the number of publications or total dollar amount of awarded funding, it can be a greater challenge to assess the reach of scholarly efforts and determine how others are utilizing the research results. Metrics for assessing research performance, quality, and impact cover a wide range of the scholarly ecosystem and are used for a variety of purposes: individual career planning, promotion, and tenure; benchmarking to track group or institutional performance; marketing and strategic planning purposes; and reporting research outcomes to the public.

Author-level metrics

Author-level metrics allow individuals to track their scholarly output and serve as a reflection of a researcher’s productivity. Enumerating such things as the number of publications in the scholarly literature, number of books published, and number and amount of funding awards can all serve to understand the efforts of individual researchers. One commonly used metric is the Hirsh index (h index). The h index, developed by Jorge E. Hirsch, PhD, in 2005 (1), offers a numeric index to measure the productivity and impact of a given researcher. The h index is a quantitative metric based on analysis of publication data, using publications and citations to provide “an estimate of the importance, significance, and broad impact of a scientist’s cumulative research contributions” (1). According to Hirsch, the h index is defined as follows: “A scientist has index h if h of his or her Np papers have at least h citations each and the other (Nh = Nh) papers have sh citations each” (1), where Np is total number of papers published.

As an example, an h index of 10 means that among all publications by one author, 10 of these publications have received at least 10 citations each. The h index is but one metric for author-level assessment. No single metric is sufficient for measuring performance, quality, or impact by an author; indeed, the discovery of a scholar’s most impactful work may be gleaned only through qualitative forms of assessment that do not rely solely on publication data.

Article-level metrics

Citation counts are perhaps the most frequently used metric at the article level. A citation is a reference to a specific publication. The inherent assumption is that significant articles will have high numbers of citations. Further analysis is required to discover why select publications garner a higher citation rate than others. Many databases provide tools for authors to track citations to their work, with some offering citation maps that can be downloaded for reporting purposes.

A growing article-level metric is based on the usage of a publication; several journals and third-party service providers are making it possible to assess the Web-based use and subsequent dissemination of individual articles. The Public Library of Science (PLoS) journals offer perhaps the most highly developed publisher-based platform for this type of tracking. Articles published in PLoS journals include an article-level metrics tab that shows such details as article usage statistics (e.g., HTML page views, PDF and XML downloads, and accesses from PubMed Central; number of users via Mendeley; and number of Facebook mentions); citations from the scholarly literature (currently from CrossRef, PubMed Central, SciVerse Scopus, and Web of Science); social bookmarks from CiteULike and Connotea; PLoS reader evaluation (i.e., readers’ feedback on the article in the form of comments, notes, and star ratings); and discussion of the article in blogs (2). These alternative metrics (or “altmetrics” as they are commonly known) for articles and even datasets and presentations are becoming easier to track via Web services such as Altmetric (http://altmetric.org) and Atmertime (http://www.atmertime.com), who offers explorer and browser-based bookmarklet applications.

Journal-level metrics

Journals are also assessed by different criteria. The impact factor, listed in Thomson Reuters’ Journal Citation Reports, assigns journals a numeric score based on the frequency with which the average article in the journal is cited over a set period of time (3). Whereas the impact factor tracks straight citations, the Eigenfactor score (http://www.eigenfactor.org) is derived from a formula based on citations from a journal over a 5-year period, with citations from highly ranked journals given more weight. Journal self-citations are not included in the Eigenfactor score, unlike the impact factor score.

A caveat of note for journal-level metrics: specialized journals or those published by societies may disseminate your work more efficiently to colleagues in your field than a “high-impact” general-interest science journal. Reaching your intended audience is the surest way to enhance the visibility and impact of your research.

Going beyond the metrics: the Becker model

It is tempting to use these metrics as an objective way to assign value or worth to a researcher’s output or to an individual journal. Although these metrics can be helpful in understanding research efforts, they cannot be evaluated in a vacuum. To understand the true impact of research, metrics derived from publication data must be supplemented with indicators that demonstrate tangible outcomes such as clinical implementation, benefit to the community, influence on legislation or policy, and economic benefit. Publication data alone do not provide a full narrative of research impact, nor are they predictive of meaningful health outcomes.

The Becker Medical Library Model for Assessment of Research Impact (4,5) serves as a framework to quantify and document research impact based on research outputs and activities. It includes resources for locating evidence of research impact and strategies for enhancing research impact. The site offers reporting templates, a glossary, and examples of relevant indicators of impact across the research process as well as a sample of a completed report. The use of publication data in tandem with the Becker Model provides a more robust overview of the impact of research to accomplish a host of higher-order activities that are critical in today’s biomedical research world, including the following:

- Justification of future requests for funding
- Quantification of return on research investment
- Discovery of how research findings are being used
- Promotion and tenure activities
- Identification of possible collaborators
- Demonstration that research findings are resulting in meaningful health outcomes
- Discovery of community benefit as a result of research findings

Kristi L. Holmes and Cathy C. Sarli are affiliated with the Bernard Becker Medical Library, School of Medicine, Washington University, St. Louis.

Find the right job Faster with the ASN Career Center

Looking for that perfect fit? Post your resume online. Whether or not you’re actively seeking work, posting your resume with ASN provides you access to the best job offers in kidney medicine and research.

Access the newest jobs available, those at the institutions and locations that most interest you, and create job alerts so you never miss a matching job opportunity.

Get started today.
20 Strategies to Enhance the Impact of Your Research

Improving access to, and retrieval of, your research articles is the surest way to enhance their impact. Repetition, consistency, and an awareness of the intended audience form the basis of most of the following strategies in areas related to preparation for publication, dissemination of content, and keeping track of your research.

1. Authors should use the same variation of their name consistently throughout their academic careers. If your name is a common one, consider adding your full middle name to distinguish it from other authors. Consistency enhances retrieval.

2. Consider adding the name of the research study or your center, institute, division, or program as a corporate author, and use the same name consistently. This will allow for enhanced retrieval of publications generated by a particular research study or center, institute, division, or program in a database or resource search. See the National Library of Medicine’s Fact Sheet Authorship in MEDLINE (1).

3. Assign Medical Subject Headings (MeSH) terms to the manuscript. Contact your health sciences library for assistance with MeSH terms.

5. Retain the rights to your manuscripts to allow for maximum flexibility in reusing your work.

6. If your work involves potential translational medicine applications, include a discussion of how the research could translate to clinical outcomes. “Impact of journal articles will be improved if they provide a direct line of reasoning for how findings might translate into useful information for real-world behaviors or technologies. This will enhance the probability that the article will affect public policy and thus increase its impact.” (3)

7. Submit the manuscript to a digital subject repository or your institution’s facility, if they have one. Contact your health sciences library for assistance with identifying appropriate locations.

8. Publish your work in an open access journal. Open access journals allow authors to retain rights to their work, which allows for other options for dissemination of the research. Open access articles may garner greater impact than traditional publication models (4).

9. Set up a website devoted to the research project, and post manuscripts of publications, conference abstracts, and supplemental materials—such as images, illustrations, slides, specimens, and progress reports—on the site.

10. Share the research data and deposit it in an appropriate repository, such as GenBank (http://www.ncbi.nlm.nih.gov/genbank) and other databases at the National Center for Biotechnology Information, or with journal publishers willing to post the data. Sharing of this information may lead to more rapid analysis and identification of genetic contributions to diseases and medical conditions. One study (5) has demonstrated a correlation between shared research data and an increased number of citations.

11. Present preliminary research findings at a meeting or conference, and after the event consider making your figures available through FigShare (http://figshare.com) and your presentation materials available in your institutional repository or on a slide-sharing site such as SlideShare (www.slideshare.net) so that others may discover and share your knowledge.

12. Consider communicating information about your research via Twitter (https://twitter.com). Twitter provides an efficient platform for communicating and consuming science. For some practical guidance on getting started and some background, see Twitter 101: How should I get started using Twitter? (6). To get a better idea of how and why scientists and physicians are using Twitter, you might find What is Twitter and Why Scientists Need to Use It (7), How Could Twitter Influence Science (and Why Scientists Are on Board) (8), and Physicians on Twitter (9) of interest, as well.

13. Research is not just text and figures. Create a podcast describing the research project, and submit it to YouTube (http://www.youtube.com) or Vimeo (http://vimeo.com). The Washington University YouTube channel offers good examples (http://www.youtube.com/user/wustlga/pcl/F4A14AE848925B0). Another option for distributing podcasts is BioMed Central (http://www.biomedcentral.com), an organization that recognizes video as an increasingly important way for researchers to communicate their results and that welcomes podcast submissions. Links to these podcasts are located on the BioMed Central YouTube channel.

14. Issue press releases for significant findings, and partner with your organization’s media office to deliver findings to local media outlets.

15. If there is a website for the study, provide information tailored for consumers. According to the 2009 Pew Internet & American Life Project report (10), 61 percent of Americans use the Internet for health information.

16. Conduct outreach visits and/or provide seminars to other institutions, scientists, practicing physicians, and health care providers to discuss your research project.

17. Consider discussing the results of your research with policy makers and other governing bodies that issue policies, guidelines, and standards. See Feeding your Research into the Policy Debate (11) for a review of the pros and cons of doing this.

18. Keep your profile data up to date on social networking sites aimed at scientists, researchers, and/or physicians. Inquire about these tools within your organization. Some highly adopted institution-wide platforms include VIVO (http://vivo.wustl.edu) and Profiles (http://profiles.catalyst.harvard.edu). These institutional efforts leverage structured data about researchers to provide current and validated information that can be used to visualize research efforts and identify new collaborators.

19. Sign up for other social networking sites to increase your visibility and connect with colleagues. Some useful sites are ResearcherID (http://www.researcherid.com) and LinkedIn (http://www.linkedin.com). Sites such as Nature Network (http://network.nature.com) allow and encourage interaction between users. Social network tools provide a forum for disseminating your research, promoting discussion of your work, sharing scientific information, and forming new partnerships.

20. Alternative metrics allow users to understand how their work is being used in the online world via bookmarks and links to the article or data, conversations on Twitter, in blogs about the work, and in the various methods of sharing and storing content. Some great sites for viewing these “altmetrics” include Total-Impact, ReaderMeter (http://readermeter.org), and resources at Altmetric, including an explorer and a bookmarklet that is easily incorporated into your Web browser bookmark bar.

References

5. Prowar HA, Day RS, Fridmana DB. Sharing detailed research data is associated with increased citation rate. PLoS ONE 2007; 2:e308. doi:10.1371/journal.pone.0000308

INDICATION
VOTRIENT is indicated for the treatment of patients with advanced renal cell carcinoma (RCC).

IMPORTANT SAFETY INFORMATION

WARNING: HEPATOTOXICITY
Severe and fatal hepatotoxicity has been observed in clinical studies. Monitor hepatic function and interrupt, reduce, or discontinue dosing as recommended. See “Warnings and Precautions,” Section 5.1, in complete Prescribing Information.

• Hepatic Effects: Patients with pre-existing hepatic impairment should use VOTRIENT with caution. In patients with pre-existing moderate hepatic impairment, the starting dose of VOTRIENT should be reduced to 200 mg per day or alternatives to VOTRIENT should be considered. Treatment with VOTRIENT is not recommended in patients with severe hepatic impairment. Increases in serum transaminase levels (ALT, AST) and bilirubin were observed. Severe and fatal hepatotoxicity has occurred. Transaminase elevations occur early in the course of treatment (92.5% of all transaminase elevations of any grade occurred in the first 18 weeks). Concomitant use of VOTRIENT and simvastatin increases the risk of ALT elevations and should be undertaken with caution (see Drug Interactions). Before the initiation of treatment and regularly during treatment, monitor hepatic function and interrupt, reduce, or discontinue dosing as recommended.

• QT Prolongation and Torsades de Pointes: Prolonged QT intervals and arrhythmias, including torsades de pointes, have been observed with VOTRIENT. Use with caution in patients at higher risk of developing QT interval prolongation, in patients taking antiarrhythmics or other medications that may prolong QT interval, and those with relevant pre-existing cardiac disease. Baseline and periodic monitoring of electrocardiograms and maintenance of electrolytes within the normal range should be performed.

• Hemorrhagic Events: Fatal hemorrhagic events have been reported (all Grades [16%] and Grades 3 to 5 [2%]). VOTRIENT has not been studied in patients who have a history of hemoptysis, cerebral, or clinically significant gastrointestinal hemorrhage in the past 6 months and should not be used in those patients.

• Arterial Thrombotic Events: Arterial thrombotic events have been observed and can be fatal. In clinical RCC studies of VOTRIENT, myocardial infarction, angina, ischemic stroke, and transient ischemic attack (all Grades [3%] and Grades 3 to 5 [2%]) were observed. Use with caution in patients who are at increased risk for these events.

• Gastrointestinal Perforation and Fistula: Gastrointestinal perforation or fistula has occurred. Use with caution in patients at risk for gastrointestinal perforation or fistula. Monitor for symptoms of gastrointestinal perforation or fistula.

• Hypertension: Hypertension, including hypertensive crisis, has been observed. Blood pressure should be well-controlled prior to initiating VOTRIENT. Monitor for hypertension and treat as needed. Hypertension was observed in 47% of patients with RCC treated with VOTRIENT. Hypertension occurs early in the course of treatment (39% of cases occurred by Day 9 and 88% of cases occurred in the first 18 weeks). In the case of persistent hypertension despite anti-hypertensive therapy, the dose of VOTRIENT may be reduced. VOTRIENT should be discontinued if there is evidence of hypertensive crisis or if hypertension is severe and persistent despite anti-hypertensive therapy and dose reduction of VOTRIENT.

• Wound Healing: VOTRIENT may impair wound healing. Temporary interruption of therapy with VOTRIENT is recommended in patients undergoing surgical procedures. VOTRIENT should be discontinued in patients with wound dehiscence.

Most common laboratory abnormalities were ALT and AST increases (all Grades [3%] and Grades 3 to 5 [2%]). Baseline and periodic urinalysis was observed in 47% of patients with RCC treated with VOTRIENT. Hypertension occurs early in the course of treatment (39% of cases occurred by Day 18 weeks). Concomitant use of VOTRIENT and simvastatin increases the risk of ALT elevations and should be undertaken with caution (see Drug Interactions). Before the initiation of treatment and regularly during treatment, monitor hepatic function and interrupt, reduce, or discontinue dosing as recommended.

In Advanced Renal Cell Carcinoma...
WARNING: HEPATOTOXICITY
Severe and fatal hepatotoxicity has been observed in clinical studies. Monitor hepatic function and interrupt, reduce, or discontinue dosing as recommended. See “Warnings and Precautions,” Section 5.1, in complete Prescribing Information.

VOTRIENT: Safety Profile Summary
• Most common adverse events observed with VOTRIENT were diarrhea, hypertension, hair color changes (depigmentation), nausea, anorexia, and vomiting
 — Grade 3/4 fatigue occurred in 2% of patients; all grades, 19% of patients
 — Grade 3/4 asthenia occurred in 3% of patients; all grades, 14% of patients
• For any individual adverse reaction in the VOTRIENT arm, the rate of Grade 3/4 adverse events is ≤4%

Most common laboratory abnormalities were ALT and AST increases
• Grade 3 ALT increases occurred in 10% of patients; grade 4, 2% of patients; all grades, 53% of patients
• In clinical trials, 92.5% of all transaminase elevations of any grade occurred in the first 18 weeks of treatment with VOTRIENT
• Monitor serum liver tests before initiation of treatment with VOTRIENT and at least once every 4 weeks for at least the first 4 months of treatment or as clinically indicated. Periodic monitoring should then continue after this time period

Hypothyroidism: Hypothyroidism was reported as an adverse reaction in 26/586 (4%). Monitoring of thyroid function tests is recommended.

Proteinuria: Monitor urine protein. Proteinuria was reported in 44/586 (8%) (Grade 3, 5/586 [<1%] and Grade 4, 1/586 [<1%]). Baseline and periodic urinalysis during treatment is recommended. Discontinue for Grade 4 proteinuria.

Pregnancy Category D: VOTRIENT can cause fetal harm when administered to a pregnant woman. Women of childbearing potential should be advised of the potential hazard to the fetus and to avoid becoming pregnant while taking VOTRIENT.

Drug Interactions: CYP3A4 Inhibitors (e.g., ketoconazole, ritonavir, clarithromycin): Avoid use of strong inhibitors. Consider dose reduction of VOTRIENT when administered with strong CYP3A4 inhibitors. CYP3A4 Inducers (such as rifampin): Consider an alternate concomitant medication with no or minimal enzyme induction potential or avoid VOTRIENT.

CYP Substrates: Concomitant use of VOTRIENT with agents with narrow therapeutic windows that are metabolized by CYP3A4, CYP2D6, or CYP2C8 is not recommended.

Concomitant use of VOTRIENT and simvastatin increases the incidence of ALT elevations. If a patient develops ALT elevations, follow dosing guidelines for VOTRIENT, consider alternatives to VOTRIENT or discontinuing simvastatin. There are insufficient data to assess the risk of concomitant administration of alternative statins and VOTRIENT.

Adverse Reactions: The most common adverse reactions (>20%) for VOTRIENT versus placebo were diarrhea (52% vs 9%), hypertension (40% vs 10%), hair color changes (depigmentation) (38% vs 3%), nausea (26% vs 9%), anorexia (22% vs 10%), and vomiting (21% vs 8%).

Laboratory abnormalities occurring in >10% of patients and more commonly (≥5%) in the VOTRIENT arm versus placebo included increases in ALT (53% vs 22%), AST (53% vs 19%), glucose (41% vs 33%), and total bilirubin (36% vs 10%), decreases in phosphorus (34% vs 11%), sodium (31% vs 24%), magnesium (26% vs 14%), and glucose (17% vs 3%); and leukopenia (37% vs 6%), neutropenia (34% vs 6%), thrombocytopenia (32% vs 5%), and lymphocytopenia (31% vs 24%).

VOTRIENT has been associated with cardiac dysfunction (such as a decrease in ejection fraction and congestive heart failure) in patients with various cancer types, including RCC. In the overall safety population for RCC (N=586), cardiac dysfunction was observed in 4/586 patients (<1%).

VOTRIENT: Clinical Research

Would you trade life expectancy to avoid dialysis?

Many patients approaching end-stage renal disease (ESRD) are willing to accept significant reductions in survival to avoid some of the burdens and limitations associated with dialysis, suggests a study in the Canadian Medical Association Journal.

The researchers performed a “discrete choice” experiment involving 105 adult patients with stage 3 to 5 kidney disease at Australian renal clinics. The study looked at how various treatment characteristics affected patients’ preferences for dialysis versus conservative care for progressive kidney disease. Variables included life expectancy, number of visits to the hospital per week, ability to travel, time spent undergoing dialysis, and other factors.

Patients were more likely to opt for dialysis if it increased their average life expectancy; odds ratio (OR) 1.84. Other factors affecting the preference for dialysis were quality of life during dialysis, the time the patients were on dialysis, and their accessibility to dialysis. Large numbers of visits to the hospital per week, a limited ability to travel, and a higher life expectancy were associated with a preference for dialysis.

Mesenchymal stem cells as induction therapy for kidney transplant

For living-related donor kidney recipients, induction therapy with autologous mesenchymal stem cells (MSCs) can improve transplant outcomes, reports a study in the Journal of the American Medical Association.

The study trial included 159 patients who were scheduled for living-related donor kidney transplantation from an ABO-compatible, cross-match–negative donor. In a 2:1 ratio, patients were randomly assigned to induction therapy with marrow-derived autologous MSCs or anti–interleukin-2 antibody (basiliximab). Autologous MSCs were given at a concentration of 1 to 2 x 10^7/kg at the time of kidney reperfusion, repeated at 2 weeks. All patients also received calcineurin inhibitors (CNIs); one-half of the MSC group received CNIs at 80 percent of the standard dose.

At 13 and 30 months, there were no significant differences in patient or graft survival. The 6-month rates of biopsy-confirmed graft rejection were lower in patients receiving autologous MSCs: 7.5 percent with standard-dose CNI and 7.9 percent with low-dose CNI, compared with 21.6 percent in the basiliximab group. Induction therapy with MSCs also led to a faster recovery of renal function during the rejection episode compared with control individuals: mean difference 6.2–10.0 mL/min per 1.73 m^2. At 1 year, patients in the MSC group had a significantly lower rate of opportunistic infections: hazard ratio 0.42.

Autologous MSCs are a possible alternative to induction therapy with anti–interleukin-2 antibody, with the potential to lower rejection risk. This open-label trial finds several advantages of MSC induction therapy, including a lower acute rejection rate compared with standard of care immunosuppression, lower rate of kidney function, and a lower rate of opportunistic infections. Long-term follow-up studies are planned [Tan J, et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplantation: randomized controlled trial. JAMA 2013; 307:1160–1177].
Ten percent rate of chronic kidney disease in children with acute kidney injury

At least 10 percent of children with acute kidney injury (AKI) in a children's hospital intensive care unit (ICU) will experience chronic kidney disease (CKD) within the next few years, according to a report in the *American Journal of Kidney Disease.*

Recent analysis of prospective follow-up data on 126 children with AKI admitted to the pediatric ICU in a Canadian children’s hospital from 2006 to 2008. (Another 173 children were lost to follow-up.) One-fourth of the patients were new-borns; in more than half, AKI was associated with open-heart surgery.

As defined by AKI network criteria, severity was stage 1 in 35 percent of children, stage 2 in 27 percent and stage 3 in 28 percent. At 1–3 years of follow-up, the rate of CKD—defined as the presence of albuminuria and/or glomerular filtration rate (GFR) less than 60 mL/min/1.73 m²—was assessed. At follow-up, the criteria for CKD were met in 10.3 percent of children who had stage 1 AKI, 10.6 percent with stage 2 AKI, and 17.1 percent with stage 3 AKI. Two percent of children who were considered at risk of CKD on the basis of mildly to moderately reduced kidney function (GFR 60–90 mL/min/1.73 m²), high blood pressure, or hypertension (GFR 60–90 mL/min/1.73 m²).

Of these tertiary care pediatric ICU patients with AKI, more than 10 percent go on to experience CKD. Overall, most of these children either have CKD already at admission or will develop a new diagnosis of CKD at follow-up. The authors believe that all children with AKI should receive regular monitoring for possible kidney damage [Mammen C, et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. *Am J Kidney Dis* 2012; 59:523–530].

Clinical role of DPP-4 inhibitors in type 2 diabetes

Dipeptidyl peptidase-4 (DPP-4) inhibitors are an effective alternative for second-line therapy in patients with type 2 diabetes, reports a meta-analysis in the *British Medical Journal.*

The analysis pooled data from 19 randomized trials, including 7163 patients assigned to DPP-4 inhibitors compared to other hypoglycemic treatments. The results showed a smaller decrease in glycaemoglobin (HbA1c) with DPP-4 inhibitors compared to metformin alone, weighted mean difference 0.20; and a lesser decrease in body weight, weighted mean difference 1.50.

As second-line treatment to reduce HbA1c, DPP-4 inhibitors were less effective than glucagon-like peptide-1 (GLP-1) agonists and sulfonylureas but were similar to pioglitazone. The DPP-4 inhibitors led to more favorable changes in body weight compared with sulfonylureas or pioglitazone but not compared with GLP-1 agonists.

Studies comparing DPP-4 inhibitors against metformin alone or with pioglitazone or against a GLP-1 agonist included few episodes of hypoglycemia. Most studies comparing a DPP-4 inhibitor plus a sulfonylurea against metformin showed a higher risk of hypoglycemia in patients taking sulfonylureas. The DPP-4 inhibitors had a lower rate of serious adverse events than did pioglitazone. They did not increase the risks of nasopharyngitis, upper respiratory tract infection, or urinary tract infection.

The updated review and meta-analysis may help to clarify the clinical role of the DPP-4 inhibitors, a newer class of oral hypoglycemic drugs. These medications appear to be effective in lowering HbA1c in patients with type 2 diabetes who do not respond to metformin alone. Further study is needed to assess their cost effectiveness and long-term safety outcomes [Karagiannis T, et al. Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. *BMJ* 2012; 344:c360].
New Medicare Code For Anemia Medication

In March 2012, Affymax and Takeda Pharmaceuticals obtained U.S. Food and Drug Administration approval for Omonys (peginesatide) injection, a once-a-month treatment for anemia in patients with chronic kidney disease (CKD) who are on dialysis. By mid-April, the Centers for Medicare & Medicaid Services (CMS) singled out the medication for a temporary Q-code for federal reimbursement, according to Affymax. CMS deemed the product important for all dialysis centers that are treating patients who receive Medicare-covered services. This new Q-code will go into effect on July 1, 2012.

The new Q-code provides dialysis centers with an immediate reimbursement code so they can submit claims in a standardized manner and reduce the turnaround time for payment. “The designation of this Q-code by CMS will help simplify their billing process for reimbursement when using this new once-monthly anemia treatment for CKD patients on dialysis,” said John Orwin, chief executive officer of Affymax. “The ability of dialysis centers to receive timely reimbursement for Omonys is important.”

According to CMS, the Q-code is used by CMS contractors when the existing, permanent national codes do not have an exact code for a product or service covered by Medicare. By the end of the first quarter of 2012 there were more than 200 Q-codes in effect for all types of medical services.

The unique aspects of dialysis make its related treatments a fertile ground for Q-codes. According to Medicare, 1.1 million patients with end stage renal disease, or CKD, and another 400,000 with renal cell cancer and mild/moderate renal impairment, according to the National Institute of Diabetes and Digestive and Kidney Diseases, receive dialysis treatments. "It is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from VOTRIENT, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother. 8.4 Pediatric Use: The safety and effectiveness of VOTRIENT in pediatric patients have not been established. In repeat-dose toxicology studies in rats including 4-week, 13-week, and 26-week administration, toxicities in bone, muscle, and kidney were found at doses approximately 0.07 times the human clinical exposure based on AUC. Doses of 305 mg/kg (approximately 0.8 times the human clinical exposure based on AUC) were associated with 13- and 6-week studies with rats. Body weight loss and morbidity were observed at these doses. Hypertrophy of epiphysial growth plate chondrocytes, muscular atrophy, anemia, and drug-related kidney and liver abnormalities in growing incisor teeth (including excessively long, brittle, and broken incisor teeth) were seen at doses approximately 0.057 times the human clinical exposure in addition. Severe, maternal body weight loss and 100% litter loss were noted in females dosed at ≥10 mg/kg (approximately 0.35 times the human clinical exposure based on AUC) at 26 weeks, with the onset of postpartum and not before parturition. In clinical trials with VOTRIENT for the treatment of RCC, 196 subjects (33%) were at least 60 years of age. In the VOTRIENT clinical trials, age characteristics of patients and patients with varying degrees of hepatic dysfunction suggested that no dose adjustment is not necessary. 8.5 Geriatric Use: No differences in safety or effectiveness of VOTRIENT were observed between elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. 8.6 Hepatic Impairment: In clinical studies for VOTRIENT, patients with total bilirubin ≤1.5 mg/dL and AST and ALT ≤2 X ULN were included (see Warnings and Precautions (5.5)). An analysis of data from a pharmacokinetic study of pazopanib in patients with varying degrees of hepatic dysfunction suggested that dose adjustment is not necessary. 8.7 Renal Impairment: Patients in renal cell cancer with impaired renal function (creatinine clearance <30 mL/min/1.73 m2) were included in clinical trials. There were no clinical or pharmacokinetic data in patients with severe renal impairment or in patients undergoing peritoneal dialysis or hemodialysis. However, renal impairment is unlikely to have a clinically significant effect on the pharmacodynamics of pazopanib since <4% of a radiolabeled oral dose was recovered in urine. In a population pharmacokinetic analysis of 409 subjects with various cancers, creatinine clearance (30-101 mL/min/1.73 m2) did not influence clearance of pazopanib. Therefore, renal impairment is not expected to influence pazopanib exposure, and dose adjustment is not necessary.
Submit your abstract for the world’s premier nephrology meeting

NEW FOR 2012

New Abstract Categories
• Dialysis: Palliative and End-of-Life Care (609)
• Ethics in Transplant, CKD, and Dialysis (701)
• Patient Safety (1301)
• Pharmacokinetics (PK)/Pharmacodynamics (PD) (1401)
• Pharmacogenetics/Pharmacogenomics (1402)

Fellows Case Reports
Fellows can submit clinical cases or pedigrees that demonstrate novel clinical findings, illustrate classic conditions in new or unusual ways, or illuminate and expand knowledge concerning physiology, cell biology, genetics, or molecular mechanisms. These case reports should reflect an understanding of the relevant science and are eligible for poster presentation and publication only. Select abstract category 1102 Fellows Case Reports during the submission process.

Submit and learn more at www.asn-online.org/KidneyWeek
Please note that ALL abstract authors (including co-authors) must have current disclosures on file with ASN at time of submission.

IMPORTANT DATES (2012)

Abstracts

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday, April 4</td>
<td>Abstract Submission Site Opens</td>
</tr>
<tr>
<td>Wednesday, June 6</td>
<td>Abstract Submission Site Closes (11:59 p.m. EDT)</td>
</tr>
<tr>
<td>Wednesday, July 18</td>
<td>Late-Breaking Abstracts Submission Site Opens</td>
</tr>
<tr>
<td>Wednesday, September 12</td>
<td>Late-Breaking Abstracts Submission Site Closes (11:59 p.m. EDT)</td>
</tr>
</tbody>
</table>

Registration & Housing

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday, June 6</td>
<td>Registration and Housing Opens</td>
</tr>
<tr>
<td>Wednesday, September 12</td>
<td>Early Registration Closes</td>
</tr>
<tr>
<td>Friday, September 28</td>
<td>Housing Closes</td>
</tr>
<tr>
<td>Wednesday, October 24</td>
<td>Advance Registration Closes</td>
</tr>
<tr>
<td>Tuesday, October 30</td>
<td>Onsite Registration Opens</td>
</tr>
</tbody>
</table>

Kidney Week

Tuesday, October 30 – Wednesday, October 31 Early Programs
Thursday, November 1 – Sunday, November 4 Annual Meeting
Medical Education Research Can Improve the Future of Nephrology and Applies to All Types of Practice

By Laura Murssetter and Mary Thompson

Have you considered sharing your experience in medical education research and helping others learn about effective changes you have implemented in your program? Consider submitting your abstract to the Medical Education Abstract category at the ASN Kidney Week 2012.

A n important task for all physicians is to educate. This may apply to those teaching the next generation of nephrologists, but it also goes far beyond that task. Medical education includes providing education to patients, colleagues, nursing staff, diabetics, and trainees about concepts concerning physiology or pathophysiology. For example, teaching a patient the reason to keep phosphorus levels controlled and noting the improvement in subsequent laboratory results is an effective educational intervention. In medical education research, the project must have a specific question with a measurable outcome to determine the success of the change. Although it might seem that medical education research is meant for academic institutions, this type of research may be performed in all practice settings. The number of investigations linking medical education and quality of care or patient outcomes is minimal (1). Research is needed to determine whether the changes in medical education implemented are useful or wasted effort. An example is that a sign could easily apply to fellowship training, where outcomes-based education has been implemented without strong evidence to back this change (2). Specifically, further investigation is necessary to determine whether the type of education given to the next generation will create nephrologists who provide higher-quality care with improved patient outcomes. The following examples will highlight some potential areas of practice where medical education research can be applied (Table 1).

Quality improvement projects

Quality improvement is a recertification requirement for all nephrologists. This project could bring many members of a team together for collaboration on enhancing an educational aspect of practice (2). The Plan-Do-Study-Act method is a model for testing a change that is implemented (3). The four steps guide the thinking process and lead to an outcome that is measured for success.

Teaching at work

Sharing knowledge is a significant part of patient care delivery as well as trainee education. However, teaching without measuring effectiveness does not answer whether the methods used to relay information are as good as they can be. Taking the time to frame a deficiency, pose an intervention, and test the results over time can optimize best teaching practices.

Simulation

Medical simulation is a rapidly growing field, and credentialing organizations are requiring it as part of the training curriculum. Simulation can be used to perform technical skills in performing procedures but also to assist in improving interactions with patients. Whether skill is being practiced, simulation provides an opportunity for feedback to be given to participants. Repeating these sessions can provide a way to evaluate learning over time (4).

Novel ideas for delivering care

Innovation can come in many forms. Examine teaching techniques or delivery of care methods that are new to the field. For example, increase the time you spend with patients by grouping those with similar medical problems together, such as monthly peritoneal dialysis visits. This gives patients a way to connect with others in a similar situation, and it also allows teaching concepts of care only once to the group instead of repeatedly in separate patient visits. Assess whether this improves patients’ satisfaction with their care, their medical knowledge, or ultimately their outcomes.

Steps to educational research

No matter the practice model, there are ways to implement educational research. Innovation and energy for a project are important, but without the tools to accomplish the task, no project will be successful. The process of educational research should parallel the familiar scientific methods (5).

Step 1: Formulate the question

The research question should be specific, with a measurable outcome. For example, you might notice that dialysis patients go through multiple cannulations before starting their treatment. A research question could be this: Does staff education about cannulation improve successful needle placement rates? (4). The measure used to determine success should be assessed before the intervention. This will validate that the perceived deficiency is truly present, and it will set the baseline for comparison after intervention. Determining the measure can be difficult. Traditional teaching has suggested qualitative findings to be the optimal assessment: “The proof is in the numbers.” Educational research may focus on qualitative findings as a better measure. Examples of measures can be found in Table 2.

Step 2: Measure the baseline

The intervention must be planned to address the specific topic. Keep the difficulty of material at the level of the audience. Use teaching methods that provide information in a variety of ways to target the largest audience. Some people learn by hearing (lectures), seeing (written word), or doing (simulation or workshops); therefore, it is wise to focus on interventions that address multiple means of knowledge delivery (6–8).

Step 3: Plan the intervention

The measure used to determine success should be assessed before the intervention. This will validate that the perceived deficiency is truly present, and it will set the baseline for comparison after intervention. Determining the measure can be difficult. Tradtional teaching has suggested quantitative findings to be the optimal assessment: “The proof is in the numbers.” Educational research may focus on qualitative findings as a better measure. Examples of measures can be found in Table 2.

Table 1. Educational research areas and implementation and analysis methods

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Project</th>
<th>Implementation (Analysis Method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Improvement</td>
<td>Requirement for recertification</td>
<td>Audience: trainees, nurses, diabetics, dialysis technologists, colleagues</td>
</tr>
<tr>
<td></td>
<td>Audience: trainees, nurses, diabetics, dialysis technologists, colleagues</td>
<td>Teach concepts to help with patient compliance (laboratory review)</td>
</tr>
<tr>
<td></td>
<td>Create a class to assist with the transition to dialysis (patient satisfaction survey)</td>
<td></td>
</tr>
<tr>
<td>Teaching at Work</td>
<td>Study how you deliver your message for efficacy</td>
<td>Audience: trainees, nurses, diabetics, dialysis technologists, colleagues</td>
</tr>
<tr>
<td></td>
<td>Learning at lunch: short nursing lectures (medical knowledge test)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Create a video for dialysis patients (pretest and posttest)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supply handouts to improve medical knowledge (multiple methods)</td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td>Requirement for credentialing organizations</td>
<td>Audience: trainees, nurses, diabetics, dialysis technologists, colleagues</td>
</tr>
<tr>
<td></td>
<td>Can be high-level or low-level technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master procedure skills (direct observation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practice patient interaction skills: delivering bad news, difficult patient (video observation)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Educational research outcome measures

<table>
<thead>
<tr>
<th>Qualitative Measures</th>
<th>Quantitative Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presurvey and postsurvey: opinion</td>
<td>Presurvey and postsurvey: numerical</td>
</tr>
<tr>
<td>Patient satisfaction survey</td>
<td>Medical knowledge test</td>
</tr>
<tr>
<td>Video observation</td>
<td>Laboratory review</td>
</tr>
<tr>
<td>Interval analysis</td>
<td>Patient outcomes</td>
</tr>
<tr>
<td>Direct observation</td>
<td>Provider performance</td>
</tr>
<tr>
<td>Interview</td>
<td>Chart review</td>
</tr>
</tbody>
</table>
Step 4: Implement the change
More is not always better. Focus on finding the most effective tool to deliver the information. It may take more than one session to have the learner retain the information. For example, it is advisable to give a lecture and then provide written language for review. Similarly, teaching patients and having them teach it back is another effective method to get repetition and check understanding.

Step 5: Measure the intervention
Not all changes improve the outcome; in fact, change might make it worse. Prove that the intervention is worth the extra effort, and make sure that the old way is not better. If the desired outcome is not met, reevaluate the intervention and try again.

Step 6: Share your findings
Most importantly, unless all concerned work together to share their successes and failures, progress in the field of nephrology education will be slow. Similar problems are seen in many practices, and if ideas for change can be shared with the community, improvement in the field will be enhanced (5). There has been a decline in the number of learners choosing nephrology as a career, which may be attributed to the style of presenting subject matter or to a lack of dedicated mentorship (9). Optimizing the delivery of curricular material to enhance understanding might be one way we can lead more trainees to a career in the field.

An excellent avenue to share projects is through the ASN Kidney Week Educational Abstracts Category. This category was developed in 2008 and is a place for sharing changes in educational programs that can make a difference in patients’ lives. These projects can be initiated and submitted by any part of the care team. Take time to consider adding a submission to the category this year. More information can be found at the ASN website.

Laura Maursetter, DO, is a member of the ASN Workforce Committee and assistant professor in the Division of Nephrology at the University of Wisconsin Madison, where she works as the associate program director. She is a member of the ASN Workforce Committee that is focused on increasing interest in nephrology as a career for trainees.

Mary K. Thompson is a PhD educator in the department of medicine at the University of Wisconsin-Madison. She works with fellowships across the department supporting education and curricular needs.

References
Hill Day 2012: ASN Leaders Put Kidney Disease in Legislative Spotlight

By Grant Olan and Rachel Shaffer

The ASN Council, Public Policy Board, and Board of Advisors met with legislators at Capitol Hill as part of the biannual Board of Advisors meeting on April 26, 2012. The second annual ASN Hill Day provided ASN leaders an opportunity to talk directly with lawmakers and House and Senate staff about issues of importance to ASN and the kidney care community. ASN leaders met with more than 50 congressional offices, including more than a half-dozen meetings with senators and representatives themselves, and were divided into four teams to discuss one of the following issues:

• National Institutes of Health (NIH) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) funding and investigation of kidney health disparities, including a bill (S.2163) recently introduced by Sen. Kent Conrad (D-ND) that promotes research regarding disparities and access to care.

• Support for legislation to extend lifetime coverage of immunosuppressive drugs for kidney transplant recipients (S.1454/H.R.2969).

• ASN’s efforts to increase interaction between the nephrology community and the U.S. Food and Drug Administration (FDA).

• A complex set of issues and upcoming changes related to the Medicare end stage renal disease (ESRD) program and the practice of nephrology.

ASN leaders met not only with senators and representatives from their home states and districts, but also with key members of congressional committees with jurisdiction over the issues ASN discussed, either from an “authorizing” perspective (meaning that the committee can tell a certain program or agency what it is allowed to, or must, do) or from an “appropriations” perspective (meaning that the committee is in charge of determining how much funding an agency or a program receives).

This Policy Update gives an in-depth description of the issues for ASN Hill Day 2012, and includes an article from members of the ASN Transplant Advisory Group that illustrates why advocating for legislation to extend lifetime coverage of immunosuppressive drugs was—and continues to be—a top ASN policy priority.

As noted above, ASN’s collaboration with the FDA is one of the society’s top policy priorities in 2012. Several ASN leaders discussed this priority with members of Congress who oversee the FDA. Although ASN is still in the early stages of outlining this collaborative initiative with the FDA to protect kidney health, the society received positive feedback about its goals from members in both the House and Senate. Stay tuned to Kidney News for more details about this vitally important initiative in the coming months.

ASN Addresses NIH Research, Health Disparities, and S.2163

During office meetings with House and Senate appropriators and other lawmakers, ASN leaders discussed the importance of supporting the NIH, which in turn supports innovative kidney disease research that will improve patient care, cut costs, and preserve the investigator pipeline. The bottom line—funding NIH is a smart investment because NIH research generates jobs, stimulates the economy, and enables life-saving medical advancements. ASN leaders spoke about the public health importance and economic benefits of kidney disease research. ASN supports the work of Congress to reduce the federal debt in a socially and fiscally responsible manner, which is why we urge continued investments in medical research. Publicly funded research supports one of every 500 full-time jobs in the United States, and every dollar invested in medical research generates $2.60 of economic activity. Furthermore, according to a 2010 study, research funding also generated 487,900 new jobs nationally and produced more than $68 billion in new economic activity in the United States.

Most developed countries are dramatically increasing their budgets for medical research. China in particular is ramping up investments in this arena. Currently, the United States is the world leader and can attract the best and brightest investigators from across the globe, but in order to maintain this position it is critical to protect medical research funding. Without this investment, the ability to sustain a pipeline of researchers from this country and abroad—and their future contributions to improving patient care and treatment and possible cures—will be lost. Consequently, ASN leaders asked the House and Senate offices they met with for their support of $32 billion for the NIH and specifically $2.03 billion for the NIDDK in the fiscal year 2013 budget—the minimum investment necessary to avoid further loss of promising research and allow NIH’s and NIDDK’s budgets to keep pace with the rising cost of conducting biomedical research.

ASN leaders also explained the importance of health disparities research and requested support for the Kidney Disease Equitable Access, Prevention, and Research Act of 2012 (S.2163). Research has helped physicians understand some of the reasons why many minority populations are at higher risk for kidney disease, but without support for additional research we cannot move forward to address and resolve disparities in kidney care.

Sen. Kent Conrad (D-ND) introduced S.2163 to help resolve inequities in kidney disease health policy by addressing barriers to transportation, patient education, and access to insurance. For example, S.2163 would provide key education for Medicare beneficiaries with stage V chronic kidney disease (CKD) through medical and clinical staff at dialysis facilities. Senate bill 2163 would also allow individuals with kidney failure to maintain their private insurance by extending the Medicare Secondary Payer period from 30 to 42 months after they qualify for Medicare, which would achieve important savings for the Medicare program.

Leading up to Hill Day, ASN laid the groundwork on the medical research advocacy front, including collaborating with the American Society of Pediatric Nephrology (ASPN) to send a letter supporting kidney disease research to both the House and Senate appropriations committees that was signed by numerous other members of the kidney community, representing patients, providers, and industry. ASN has received positive feedback regarding the letter, including a request from the office of Rep. Jeff Flake (R-AZ), who sits on the House Ways and Means Appropriations health subcommittee (which has significant influence over the NIH budget) to discuss kidney disease research and the NIDDK budget in particular. While this is a difficult time for Congress to make spending-related decisions, the importance of kidney disease research is squarely on the radar screens of those members with influence.

ASN and ASPN are deeply grateful for the support of the Congressional Kidney Caucus, which submitted language for inclusion in the report the House Appropriations Committee submits to the full House of Representatives highlighting the importance of kidney disease research across the NIH and directed at patients of all ages. This report is vitally important, as it explains to Congress the reasons for including the spending proposals in appropriations bills. In addition, ASN and ASPN worked with the caucus to include a specific funding recommendation of $2.03 billion for the NIDDK budget—the first time a specific budget level has been supported by the kidney community.

ASN has taken a number of other steps such as:

• Joining more than 165 organizations in sending a letter urging Congress to support $32 billion in funding for NIH.

• Involving the ASN membership in a petition-signing campaign urging the White House to support more funding for NIH.

• Joining more than 900 organizations in sending a letter urging Congress to avert cuts to the overall Health and Human Services budget.

• Launching an ASN membership email campaign to urge their members of Congress to...
support more research funding for NIH. Contact your member at http://capwiz.com/asn/home/.

ASN is grateful to the society’s leaders for helping make Hill Day 2012 a success, and the society will continue to engage lawmakers and their offices in the months to come as the budget process plays out and other pieces of legislation important to the kidney community move forward.

Helping Congress Understand the Evolving Practice Environment in Nephrology

Congress made a commitment to save the lives of people with kidney failure by establishing the Medicare ESRD program in 1972, a program that covers all citizens experiencing kidney failure, regardless of age. This essential government program and the kidney professionals who implement it are at the forefront of the innovations, system transformations, and pioneering changes that will affect other areas of health care.

A key goal of ASN Hill Day was informing those lawmakers with oversight of the Medicare ESRD program, or those with a history of commitment to kidney disease and the Medicare ESRD program, of the implications these profound reforms could have for patients and physicians. In order for ASN to achieve success in this area, it is crucial to gain the support of lawmakers who understand the complexity of these changes, who will support kidney professionals’ effort to enact change that focuses on improving care for a vulnerable population, and who will allow time to assess efforts to reduce costs and measure the quality of care.

ASN representatives discussed four key components of the “evolving practice environment in nephrology.”

First is the ongoing process of implementing the Medicare Improvements for Patients and Providers Act (MIPPA), including bundled payments for dialysis care. At the heart of ASN’s message was the principle that Congress should avoid future Medicare payment changes until recently enacted MIPPA changes are fully implemented. Meaningful cost reductions will succeed only if patient care remains uncompromised. Evaluating the success of the program’s experience with bundled payment systems and pay-for-performance quality programs will serve as a model for needed changes to other areas of health care.

Second, it is important for Congress to understand the complexity of addressing the measures and programs related to improving the quality of health care. Because nephrology professionals provide care to a highly vulnerable patient population, achieving this goal requires consistent, evidence-based evaluations of the quality of care provided. Promoting the use of the same measures across programs is crucial to facilitate consistent care, reduce unnecessary reporting burdens, and prevent costly data duplication. ASN is dedicated to helping develop and ensure the consistency of quality metrics that fulfill these essential standards.

Third, ASN discussed the society’s principles related to the potential development of integrated care delivery models. Foremost among these principles (available in full at http://asn-online.org) is preservation of the patient-physician relationship. ASN’s advocates addressed the very real potential that such pilot or demonstration programs could pave the way to dramatic improvements in kidney care, but cautioned that establishing successful ones requires careful consideration of the potential effects on a vulnerable patient population.

The fourth component of ASN’s message was the vital need to repeal the flawed sustainable growth rate and replace it with a sensible alternative. Addressing this fundamentally defective formula is key to ensuring that patients maintain access to care, and that physicians can count on the Medicare program to provide payments that accurately reflect the cost of care.

Making the Case for Lifetime Immunosuppressive Drug Coverage

Advocating for legislation to extend lifetime coverage of immunosuppressive drugs (S.1454/H.R.2969) is a cornerstone of ASN’s public policy and Hill Day 2012 messages. ASN leaders met with more than a dozen offices, specifically focusing on members of Congress who supported this bill when it was introduced in the 111th Congress, but who have not signed onto the bill in the 112th Congress (the current session). Here, members of the ASN Transplant Advisory Group Alan Leichtman, MD, David Cohen, MD, and Chair Michelle Josephson, MD, outline the history of this legislation and why it’s the right thing for Congress to do from every perspective, illustrating the many reasons that this issue is at the top of ASN’s public policy priorities.

Transplantation, for nearly all suitable transplant candidates, is the preferable and most cost-effective treatment for ESRD, and typically provides superior longevity, health, and quality of life when compared with dialysis. Median 5-year survival is nearly double for patients following renal transplantation compared with patients who remain on dialysis. For those patients with Medicare coverage from ESRD, Medicare will cover the costs of dialysis indefinitely but only the initial costs of a kidney transplant (1). For most transplant patients Medicare coverage ends after 36 months, leaving many patients unable to pay for the immunosuppressive medications required indefinitely to prevent rejection. Consequently, financial hardship forces many to become non-adherent with their medical regimens—reducing their doses or discontinuing their immunosuppressive medications entirely. Financial hardship-related non-adherence in turn leads to rejection, transplant dysfunction with the associated costs of CKD, and the premature return to dialysis. Once patients return to dialysis they are again covered by Medicare, at minimal cost, but without the cost reductions previously incurred for the kidney transplant. It clearly makes neither clinical nor financial sense to pay indefinitely for the less efficacious and more expensive treatment, while denying long-term coverage for the more effective and less costly alternative.

In addition there is a shortage of kidneys, and the deficit in the number of kidneys available for transplantation is exacerbated by the 15 percent of waitlisted patients seeking repeat transplantation. With lifetime immunosuppressive drug coverage, there is little doubt that many transplants would last longer, resulting in fewer patients returning to the waiting list for repeat transplantation, and thus more kidneys would be available for other transplant candidates.

How widespread is this problem? While precise numbers are hard to come by, a survey conducted by the United Network for Organ Sharing and the American Society of Transplantation indicated that 70 percent of kidney transplant programs reported that many of their patients had an extremely serious or very serious problem paying for their medications, and 68 percent reported deaths or graft losses attributable to cost-related immunosuppressive medication non- adherence (2). While extending Medicare coverage for immunosuppressive medications will not entirely solve this problem, it would help a substantial number of these patients. Federal expenditures for kidney disease currently cost taxpayers more than $30 billion a year, about 6 percent of the Medicare budget. Expanded immunosuppressive medication coverage offers a more cost-effective way for the federal government to manage these expenses. For nearly 10 years the transplant community has lobbied Congress to extend coverage of immunosuppressive medications for kidney transplant recipients for the lifetime of the organ. A bill has been introduced in both the House and Senate to provide for this, and it has broad bipartisan support. The current lead sponsors are the physician Rep. Michael Burgess (R-TX), Rep. Ron Kind (D-WI), Sen. Dick Durbin (D-IL), and Sen. Thad Cochran (R-MS). The current House Ways and Means Committee Chairman Dave Camp (R-MI) was the lead sponsor for many years. ASN will continue to work with a coalition of transplant organizations to keep the patient immunosuppressive medication coverage extension bill at the top of many legislative priority lists. This current policy of paying for a kidney patient’s transplant but not providing the drugs necessary to keep the transplant and the patient alive defies common sense, is life threatening for patients, and costs the federal government untold millions in avoidable expenditures. When will common sense prevail?

Please visit the ASN’s Legislative Action Center (http://capwiz.com/asn/home) and send your members of Congress a message telling them how important this bill is for all patients with kidney disease.

The premier preparatory course for certification in nephrology.

Board Review Course & Update
August 25-31, 2012
San Francisco, CA

Education | The ASN Advantage
www.asn-online.org/brcu
Leader of ASN Grants Review Committee Named Editor-in-Chief of Kidney International; New Chair Named

After leading the American Society of Nephrology (ASN) Grants Program for 3 years, Detlef Schlondorff, MD, has been named editor-in-chief of *Kidney International*. Under his guidance, the ASN Grants Review Committee added two new opportunities for career development grants: the ASN–Association of Specialty Professors (ASP)–National Institute of Aging (NIA) Junior Development Grant in Geriatric Nephrology and the NephCure Foundation–ASN Research Grant. Schlondorff was also instrumental in expanding the ASN Student Scholar Grant Program and launching the new ASN Research Fellowship Program, which will fund its first 10 fellows later this year.

The ASN Grants Program distributes more than $3 million each year in research funding to medical students, fellows, and established investigators. Last year ASN awarded a total of 31 research grants. “Dr. Schlondorff has been instrumental in maintaining the high caliber of quality of the ASN Grants Program, and expanding the program to reach more researchers,” said ASN Past-President Joseph Bonventre, MD, PhD, FASN. “I am particularly impressed by his ability to manage an increasingly complex grants portfolio with increasing numbers of applications, and his leadership in strengthening ASN’s partnerships with the Halpin Foundation, the NephCure Foundation, ASP, and NIA.”

In addition to his success overseeing the ASN Grants Program, Schlondorff has a long list of academic and professional achievements. He currently serves as visiting professor of medicine at Mount Sinai School of Medicine, where he leads an active research laboratory. Schlondorff has authored more than 300 peer-reviewed original and review articles and book chapters, and has edited two textbooks. He is a member of numerous professional societies and has received the Franz Volhard Medal from the German Nephrology Society and the International Prize Luis Hernando from the Spanish Renal Foundation.

Schlondorff received his medical degree at Ludwig Maximilians University in Munich, and continued his training in Germany and at the Albert Einstein College of Medicine and Montefiore Hospital in New York. He was professor of medicine and chief of the nephrology division at the Albert Einstein College of Medicine from 1988 to 1993, when he became chair and professor of medicine and director of the University Medical Polyclinic Hospital Innenstadt of the Ludwig Maximilians University and eventually professor emeritus in 2007.

ASN is pleased to announce that Roy Zent, MD, PhD, will succeed Schlondorff as chair of the ASN Grants Review Committee. Zent is professor of medicine at Vanderbilt University School of Medicine and has served on the Grants Review Committee since 2008. “I am confident that Dr. Zent will provide excellent leadership as ASN continues to expand and innovate its grants program,” said ASN President Ronald Falk, MD, FASN. “In particular, I’m excited that Dr. Zent agreed to help launch the ASN Research Fellowship Program this year.”

ASN Research Grants

- Career Development Grants for New Investigators
 - Carl W. Gottschalk Research Scholar Grant (established in 1996)
 - John Merrill Grant in Transplantation (established in 2001)
 - The Halpin Foundation–ASN Research Grant (established in 2006)
 - Normal Siegel Research Scholar Grant (established in 2007)
 - The NephCure Foundation–ASN Research Grant (established in 2012)
 - ASN-ASP-NIA Junior Development Grant in Geriatric Nephrology (established in 2011)
- M. James Scherbenske Grants for Established Investigators (established in 1996)
- Student Scholar Grants (established in 2000)
- Research Fellowships (established in 2012)

Maintaining your certification with ASN’s Dialysis Practice Improvement Module

Available Now

ASN provides the best learning opportunities in kidney care. The Dialysis Practice Improvement Module (DPIM) guides physicians through a review of patient data and supports the implementation of a quality-improvement (QI) plan for their practice.

- Evaluate and improve care for dialysis patients
- Implement an individual or practice-wide improvement plan
- Earn 20 MOC points from ABIM

Online Learning | The ASN Advantage

www.asn-online.org/learningcenter

Index to Advertisers

Davita ... Back Cover
GlaxoSmithKline .. Pages 12–16
In 2 Med ... Page 19
Montefiore Medical Center ... Page 2
Takeda ... Pages 5–7
IT’S ABOUT TIME
Don’t let it pass you by.

To receive the maximum federal EHR incentive payment, Medicare eligible professionals must adopt and meaningfully use a certified EHR program in 2012. Sign up with Falcon EHR by June 1, 2012 and we will implement your practice in time to demonstrate Meaningful Use for 90 days in 2012. Implementations are filling up fast, so save your spot today!

Act now so your practice can go live before the CMS deadline. Visit www.FalconEHR.com/Incentives to learn more.