Disease-associated mutant ubiquitin causes proteasomal impairment and enhances the toxicity of protein aggregates

Elizabeth M. H. Tank
Washington University School of Medicine in St. Louis

Heather L. true
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/750

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Disease-Associated Mutant Ubiquitin Causes Proteasomal Impairment and Enhances the Toxicity of Protein Aggregates

Elizabeth M. H. Tank, Heather L. True*
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America

Abstract
Protein homeostasis is critical for cellular survival and its dysregulation has been implicated in Alzheimer’s disease (AD) and other neurodegenerative disorders. Despite the growing appreciation of the pathogenic mechanisms involved in familial forms of AD, much less is known about the sporadic cases. Aggregates found in both familial and sporadic AD often include proteins other than those typically associated with the disease. One such protein is a mutant form of ubiquitin, UBB+1, a frameshift product generated by molecular misreading of a wild-type ubiquitin gene. UBB+1 has been associated with multiple disorders. UBB+1 cannot function as a ubiquitin molecule, and it is itself a substrate for degradation by the ubiquitin/proteasome system (UPS). Accumulation of UBB+1 impairs the proteasome system and enhances toxic protein aggregation, ultimately resulting in cell death. Here, we describe a novel model system to investigate how UBB+1 impairs UPS function and whether it plays a causal role in protein aggregation. We expressed a protein analogous to UBB+1 in yeast (Ubext) and demonstrated that it caused UPS impairment. Blocking ubiquitination of Ubext or weakening its interactions with other ubiquitin-processing proteins reduced the UPS impairment. Expression of Ubext altered the conjugation of wild-type ubiquitin to a UPS substrate. The expression of Ubext markedly enhanced cellular susceptibility to toxic protein aggregates but, surprisingly, did not induce or alter nontoxic protein aggregates in yeast. Taken together, these results suggest that Ubext interacts with more than one protein to elicit impairment of the UPS and affect protein aggregate toxicity. Furthermore, we suggest a model whereby chronic UPS impairment could inflict deleterious consequences on proper protein aggregate sequestration.

Introduction
As technology and medicine further extend the human lifespan, age-related diseases will become more prevalent. Alzheimer’s disease (AD) is a neurodegenerative disorder that affects 20 million people worldwide and is the most common form of late-onset dementia [1]. The study of genetic mutations that cause early onset AD has provided insight into some of the factors involved, but most cases of AD are sporadic and of unknown origin. Uncovering the risk factors involved in any multi-factorial disease is challenging but vital for disease treatment and prevention. Many fundamental pathways, including the ubiquitin proteasome system (UPS), have been suggested to play a role in AD. Therefore, investigating the relationship between AD and the UPS could lead to new therapeutic targets.

The UPS is an evolutionarily conserved pathway that selectively eliminates short-lived and damaged proteins. A number of cellular processes, including the cell cycle, stress response, and DNA repair, require the UPS [2]. Protein degradation by the UPS involves a series of enzymes that ultimately attach ubiquitin, a small well-conserved protein, to an internal lysine residue in the target protein [3–5]. Multiple ubiquitin proteins can be connected to form a polyubiquitin chain which serves as a degradation signal recognized by the 26S proteasome. A series of events involving E1, E2 and E3 enzymes are required to attach ubiquitin via its C-terminal glycine residue to the target protein. The formation of polyubiquitin chains and the process of ubiquitin conjugation to protein targets displays exquisite specificity, in part by the multitude of E2 and E3 enzymes. Despite intensive study, the roles of many components of the UPS remain to be elucidated.

The importance of the UPS in cellular homeostasis is apparent not only by the redundancy and conservation of the components, but also by its role in disease [5,6]. The complex interplay between protein aggregation and UPS function is easily appreciated, yet it is often difficult to determine the causal nature of the problem. UPS dysfunction can prevent the degradation of misfolded proteins, which can lead to aggregation. Conversely, protein aggregates can be challenging substrates for the UPS and can thus cause proteasomal impairment [7]. Protein aggregation is a hallmark of many neurodegenerative disorders [6]. In addition, mutations in ubiquitin processing enzymes, such as UCHL1 and Parkin, can lead to inherited forms of neurodegenerative diseases [8,9]. Furthermore, many protein aggregates associated with disease show ubiquitin deposition [10], suggesting that dysfunctional UPS activity may contribute to pathogenesis. Understanding the interplay between protein aggregation and clearance is an
Author Summary

The accumulation of cytotoxic protein aggregates occurs in many neurodegenerative diseases. It is difficult to determine if the protein aggregates found in these diseases represent a cause or consequence of the disorder. Degradation pathways, such as the ubiquitin/proteasome system (UPS), remove misfolded proteins that are prone to aggregate. The UPS involves many players that work in concert to target proteins for degradation by the proteasome. A mutant form of ubiquitin has been associated with many diseases, including Alzheimer's disease. We developed a yeast model of the mutant ubiquitin protein in order to investigate its effect on UPS function and protein aggregation. We demonstrate that this mutant ubiquitin causes impairment of the UPS and suggest that it does so by interacting with multiple components of the pathway. Using this model, we evaluated the effects of the mutant ubiquitin on nontoxic protein aggregates and found that they were unaltered by its presence. We demonstrate that the mutant ubiquitin acts as a modifier, which increases cellular susceptibility to the phenotypic effects of deleterious protein aggregates by altering UPS functionality and substrate ubiquitination. Furthermore, the system we developed can be utilized to further understand the complex interplay of proteasomal impairment and protein aggregate toxicity.

active area of research, but most systems are complicated by cellular toxicity, which alone can have negative consequences on protein homeostasis.

A mutant form of ubiquitin was found associated with AD and other diseases and was proposed to act as a natural proteasome inhibitor [11]. The generation of this mutant ubiquitin protein is unusual - the mutation is found in the messenger RNA, but not in the DNA sequence of the ubiquitin-B gene. The mutant ubiquitin results from a dinucleotide deletion near the 3' end of the mRNA transcript which shifts the reading frame for translation. The mutant protein has been named UBB1 [12]. The dinucleotide deletion event in the mRNA has been termed "molecular misreading", though the mechanism by which the deletion occurs remains elusive [13,14]. Many human mRNA transcripts, including all copies of ubiquitin, contain potential sites for molecular misreading, since hotspots for these events are hypothesized to occur near simple repeat sequences (e.g. GAGAG) [15]. The best characterized +1 mutant ubiquitin protein has a short C-terminal extension, with the majority of the protein being identical to ubiquitin [12]. As such, the protein is presumably folded and recognized as ubiquitin, but the C-terminal glycine residue essential for conjugation to substrates is absent.

The accumulation of the UBB1 protein in the neurological hallmarks of AD is curious, since the mutant cannot be conjugated to target proteins [12]. The presence of UBB1 has been proposed to represent an endogenous readout of proteasomal dysfunction [16,17]. Due to its association with protein aggregation, it was also suggested that UBB1 could contribute to disease pathology [18]. UBB1 protein accumulation has been documented in multiple disorders such as polyglutamine expansion diseases (including Huntington's disease), Pick's disease and even non-neuronal tissue diseases [11,19]. However, the mechanism of UBB1 action in these diseases remains unclear.

To evaluate the role of UBB1 in disease, the effects of ectopic UBB1 expression have been investigated in cultured mammalian cells. Although UBB1 cannot be conjugated to target substrates, it can be ubiquitinated by wild type ubiquitin and degraded by the proteasome [20]. However, high levels of UBB1 expression cause proteasomal impairment [16,21,22]. As a natural inhibitor of the UPS, UBB1 could be another example whereby proteasomal impairment induces protein aggregation. Therefore, UBB1 might act as a disease modifier. Recently, a UBB1 transgenic mouse has been characterized [23]. UBB1 expression resulted in constant UPS impairment that caused a minor learning deficit and caused changes in transcription profiles that mirror those found in brains of humans with AD [23]. The expression of UBB1 in mammalian cells enhances the toxicity and aggregation of an expanded polyglutamine protein [24]. However, measuring changes in protein aggregation in cells that are dying from toxic protein aggregates is challenging. Hence, it remains to be determined if UBB1 affects protein aggregation \textit{per se}, or if it affects the ability of the cells to cope with the aggregates.

We developed a model system using \textit{Saccharomyces cerevisiae} to evaluate the cellular effects of UBB1. We expressed a mutant ubiquitin protein (Ubext), analogous to UBB1 and found that it caused UPS impairment in yeast. Furthermore, we found that Ulyext changed the ubiquitination pattern on a UPS substrate. Taking advantage of non-toxic protein aggregates in yeast, we demonstrated that the expression of Ulyext neither induced nor changed these aggregates. However, Ulyext did make cells more susceptible to toxic protein aggregates. We propose that Ulyext does not cause protein aggregation, but rather acts as a phenotypic enhancer of deleterious aggregation. We present a model based on our work and other recent advances in the field to explain how this might occur.

Results

Ubext Expression in Yeast Cannot Functionally Rescue a Decrease in Wild Type Ubiquitin

The mechanism by which +1 proteins, such as UBB1, are produced is currently unknown. To create a yeast model of UBB1, we generated an expression vector containing the sequence of the first ubiquitin-coding region of the yeast tandem ubiquitin gene, \textit{UBI4}, such that a dinucleotide deletion occurred near the carboxy terminus (Figure 1A). The deletion caused a frameshift in the coding sequence of ubiquitin and extended the open reading frame to the next stop codon (termed extended ubiquitin or Ubext). This construct mimics the generation of UBB1 from the human tandem ubiquitin gene (ubiquitin-B). Constitutive expression of Ubext in log-phase yeast did not cause a growth defect when assessed in either liquid medium (data not shown) or on solid medium (Figure 1B). Wild type cells expressing Ubext did show a reduced growth rate after recovery from stationary phase (data not shown).

To evaluate the functionality of Ubext, we analyzed its ability to replace wild type ubiquitin. The stress-inducible \textit{UBI4} gene encodes a tandem array of five ubiquitin moieties that are separated post-translationally by deubiquitinating enzymes (DUBs) that cleave after the C-terminal glycine residue, G76 [25]. \textit{UBI4} is non-essential in vegetatively growing cells but is required for cells to recover from various stress conditions [26,27]. We utilized a strain lacking \textit{UBI4} to evaluate the functionality of Ubext. \textit{S. cerevisiae} cells were transformed with expression plasmids that contain wild type ubiquitin, Ubext or empty vector. The transformants were grown for two weeks to allow them to reach stationary phase and then plated again to evaluate their ability to recover. Only cells expressing extra wild type ubiquitin were rescued from the loss of \textit{UBI4} and could grow after this stress (Figure 1C). This demonstrates that Ubext is a non-functional ubiquitin, as expected due to the lack of the C-terminal glycine residue required for conjugation to target substrates.
Ubext Expression Causes UPS Impairment

If Ubext affects UPS functionality in yeast as UBB+1 does in mammals, then we hypothesized that Ubext would display synthetic lethality with a proteasome mutant. We evaluated the cellular viability of a temperature-sensitive catalytic proteasome mutant strain (pre1-1 pre2-2) [28] expressing Ubext. As predicted, Ubext-expressing pre1-1 pre2-2 cells were inviable at the restrictive temperature (Figure 2A). Wild type cells expressing Ubext grown at the restrictive temperature did not show a growth defect (Figure 2A). Next we evaluated another ubiquitination-dependent process to determine if Ubext effects are more widespread. We challenged Ubext-expressing cells to DNA damage induced by UV irradiation and found that they survived as well as the control cells (data not shown).

Ubext cannot be conjugated to target protein substrates, but can be recognized as a UPS substrate. Therefore, we assessed its ubiquitination. Protein lysate from Ubext-expressing cells and control cells were evaluated by SDS-PAGE and western blot. Cells expressing Ubext exhibited a unique band which represents the extended mutant ubiquitin protein (Figure 2B, grey arrow) which is larger than wild type ubiquitin (Figure 2B, arrowhead). Cells expressing Ubext also displayed a distinctive laddering pattern which suggests that Ubext is conjugated by wild type ubiquitin moieties (Figure 2B, grey arrow). A similar laddering pattern was previously observed in cells expressing UbDGG [29], a mutant ubiquitin protein lacking only the two C-terminal glycine residues, and we observed the same pattern when we expressed UbDGG in yeast (data not shown). Additionally, a strain lacking the ubiquitin recycling DUB (\textit{Dubp14}) accumulates free ubiquitin chains [29] and we also observed that \textit{Dubp14} cells show the same ubiquitin laddering pattern as cells expressing Ubext (data not shown).

The expression of Ubext also caused an increase in the level of unconjugated wild type ubiquitin, which was evident by the accumulation of the mono-ubiquitin band in the Ubext lane in comparison to the empty vector control lane (Figure 2B, black arrowhead). Further analysis by quantitative western blot showed approximately a 10-fold increase in wild type mono-ubiquitin in the presence of Ubext (data not shown). Transcriptional activity from the \textit{UBI4} promoter using a \textit{UBI4promoter-Lac\textsubscript{Z}} reporter in Ubext-expressing cells demonstrated a modest two-fold increase (data not shown), suggesting that \textit{UBI4}-induced transcription may be one, but perhaps not the only source for the increased ubiquitin. Cells expressing Ubext also displayed an increase in the abundance of high molecular weight ubiquitin-conjugated proteins in comparison to the empty vector control (Figure 2B, compare left lane WT to right lane Ubext). The fact that Ubext caused lethality in the proteasome mutant strain and Ubext-expressing cells accumulated ubiquitinated-protein conjugates, suggests that it is affecting protein degradation. An accumulation of high molecular weight ubiquitinated proteins also occurred with the over expression of wild type ubiquitin (Figure 2B, middle lane). Most likely this occurs because of more ubiquitination of endogenous proteins due to an excess of functional ubiquitin provided by the over expression construct.

We tested the functionality of the UPS in cells expressing Ubext using two different proteasome reporters constructs: an N-end rule substrate and a ubiquitin fusion degradation (UFD) substrate [30]. These substrates are processed by the UPS using distinct enzymes [3,31,32]. The N-end rule substrate is a Ub-R-Lac\textsubscript{Z} fusion. The ubiquitin moiety is efficiently cleaved by endogenous DUBs to expose the N-terminal amino acid (arginine) of β-galactosidase (βgal). According to the N-end rule, R-βgal is an unstable protein that is polyubiquitinated and rapidly degraded by the 26S proteasome [33]. The UFD reporter substrate is Ub-P-Lac\textsubscript{Z}. In yeast, no DUB can cleave ubiquitin from βgal if the first amino acid after ubiquitin is proline. Because of the ubiquitin fusion, Ub-P-βgal is unstable and is rapidly degraded by the proteasome. These constructs, along with a stable Lac\textsubscript{Z} control (Ub-M-Lac\textsubscript{Z}), were transformed into cells expressing Ubext to assess UPS function by βgal activity assays. Cells expressing Ubext and either of the unstable proteasome reporters displayed higher levels of specific βgal activity (Figure 2C and 2D). Cells expressing extra wild type ubiquitin showed a slight increase in the stabilization of the reporter constructs. The expression of extra wild type ubiquitin also generated a large steady state population of ubiquitin-conjugated proteins (Figure 2B, middle lane), which could be taxing the degradation capacity of the UPS.
Mutant Ubiquitin in Yeast

A

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>EV</th>
<th>Ub</th>
<th>Ub<sub>ext</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>11/22</td>
<td>30°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/22</td>
<td>37°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>kDa</th>
<th>WT</th>
<th>Ub OE</th>
<th>Ub<sub>ext</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Ub</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Pgk1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Ub-R-LacZ</th>
<th>specific βgal activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV</td>
<td></td>
</tr>
<tr>
<td>Ub</td>
<td></td>
</tr>
<tr>
<td>Ub<sub>ext</sub></td>
<td></td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Ub-P-LacZ</th>
<th>specific βgal activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV</td>
<td></td>
</tr>
<tr>
<td>Ub</td>
<td></td>
</tr>
<tr>
<td>Ub<sub>ext</sub></td>
<td></td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>R-βgal</th>
<th>Ub-P-βgal</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV</td>
<td></td>
</tr>
<tr>
<td>Ub<sub>ext</sub></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td></td>
</tr>
<tr>
<td>Ub<sub>ext</sub></td>
<td></td>
</tr>
</tbody>
</table>

α-βgal

α-Ub
Figure 2. Expression of Ubext causes proteasomal impairment. (A) Ubext displays synthetic lethality with proteasome mutants. Wild type (WT) and temperature-sensitive proteasome mutant cells, pre1-1 pre2-2 (11/22), were transformed with plasmids containing empty vector (EV), ubiquitin (Ub) and Ubext. Serial dilutions of cells were spotted onto selective medium and grown at 30°C and 37°C. (B) Cells expressing Ubext show a distinct pattern of ubiquitin conjugation. Protein lysate from wild type yeast cells containing an empty vector (WT), extra ubiquitin (Ub OE), or Ubext were analyzed by SDS-PAGE and western blot using an anti-ubiquitin antibody. Ubext causes an increase in ubiquitin-conjugated proteins (bracket) as compared to WT. The black arrowhead indicates ubiquitin monomer. The grey arrow points to Ubext. Black arrows represent conjugated Ubext. Pgk1p expression was probed to assess protein loading on the membrane. (C) Ubext-expressing cells impair the degradation of the N-end rule substrate R-β-galactosidase (β-gal). Cells containing EV, Ub, or Ubext were transformed with pGal-Ub-R-LacZ. The stability of R-β-gal was measured by specific activity (luminescence units/μg protein). The asterisk (*) indicates statistical significance between wild type Ub and Ubext (p = 0.0003). (D) Ubext-expression prevents the efficient proteasomal degradation of a ubiquitin fusion degradation substrate. The stability of Ub-P-LacZ was evaluated as in B. The asterisk (*) indicates statistical significance between wild type Ub and Ubext (p = 0.0005). (E) Ubiquitinated reporter substrates are present in Ubext-expressing cells. Wild type cells containing the Ub-X-LacZ reporter constructs and expressing Ubext or the control (EV) were analyzed for ubiquitinated β-gal protein. β-gal protein was immunoprecipitated with an anti-β-gal antibody (left) and the bound fractions were blotted with an anti-ubiquitin antibody (right). The arrow indicates full length β-gal protein.

doi:10.1371/journal.pgen.1000382.g002

proteasome. To evaluate if Lac\textsubscript{Z} fusion expression was affected by Ubext, stable M-β-gal activity was measured and showed no difference (data not shown). These results demonstrate that the expression of Ubext in yeast inhibits the degradation of two different UPS reporter substrates.

Such stabilization of the proteasome reporter constructs could be due to a lack of ubiquitination of the reporter, since the expression of Ubext also causes accumulation of unconjugated wild type ubiquitin. The reporter substrates (β-gal protein) were immunoprecipitated from cells with and without the co-expression of Ubext. Western blot with an anti-β-gal antibody revealed that more β-gal protein was precipitated in Ubext-expressing cells (Figure 2E, left). This result correlates with the higher levels of β-gal activity measured in Ubext-expressing cells (Figure 2C and D).

Analysis with an anti-ubiquitin antibody showed ubiquitin-conjugated R-β-gal and Ub-P-β-gal in cells expressing Ubext (Figure 2E, right). This data demonstrates that Ubext is not stabilizing these UPS substrates by blocking their ubiquitination.

Expression of Ubext Does Not Directly Block Proteasome Function

Another plausible explanation for the UPS inhibition could be that Ubext binds to the proteasome and this interaction precludes other proteasome substrates from being efficiently degraded. Alternatively, Ubext could interact with other component(s) of the UPS and inhibit their function. To examine whether Ubext is clogging the proteasome, we took advantage of a ubiquitin-independent proteasome substrate. Ornithine decarboxylase (ODC) is an enzyme involved in polyamine biosynthesis [34,35] and a short peptide from this protein serves as a ubiquitin-independent degradation signal (i.e. degron) [36]. Measuring the degradation of ODC reflects the functionality of the proteasome in a manner independent of the non-proteasomal components of the UPS cascade. A fusion of GFP with the degron of ODC (GFP-ODC) serves to target GFP to the proteasome where it is rapidly degraded [37]. A point mutation in the ODC degron (G441A) stabilizes the fusion protein by lowering its affinity for the proteasome [38,39]. GFP-ODC fusions were transformed into cells expressing Ubext and the steady state level of GFP-ODC was evaluated by western blot (Figure 3A). Cells expressing Ubext were able to degrade the GFP-ODC protein while the stable GFP-ODCG441A protein accumulated (Figure 3A). Even prolonged exposure showed that the steady state level of GFP-ODC was approximately equal with or without Ubext expression (Figure 3B). Thus, Ubext permits the degradation of a ubiquitin-independent proteasome substrate, suggesting that the proteasomal degradation capacity is not significantly impaired in cells expressing Ubext.

Simple Modifications Do Not Alleviate the UPS Impairment Caused by Ubext

We sought to determine how Ubext exerts its negative effects on the UPS pathway. We asked whether Ubext was sequestering wild type ubiquitin proteins. Ubiquitin-Ubext could be refractory to DUBs, thereby tying up ubiquitin, as suggested for UBB+1 [20]. To test this hypothesis, we expressed extra ubiquitin in the presence of Ubext and found that the UPS test substrates were still stabilized (data not shown). This result was not surprising since monomeric ubiquitin appears to be abundant in cells expressing Ubext (Figure 2B, arrowhead). This suggests that a lack of wild type ubiquitin is not the cause of the UPS impairment elicited by Ubext.

Ubext lacks the essential C-terminal glycine residues (G75 and G76) required for ubiquitin conjugation and these glycine residues are vital for many proteins to interact with ubiquitin [40]. We tested whether adding back two glycine residues to the C-terminal extension of Ubext (UbextGG) could restore these interactions and alleviate the proteasomal impairment. Cells expressing UbextGG still displayed proteasomal impairment (data not shown), indicating that the C-terminal extension plays a mechanistic role in the phenotype observed.

Ubext–Ubiquitin Conjugation Is Required for N-End Rule Substrate Stabilization but not for UFD Substrate Stabilization

UPS-mediated protein degradation is a selective process and polyubiquitination is the signal which targets proteins to the proteasome for degradation [41,42]. Therefore, we asked whether blocking the ubiquitination of Ubext would alleviate the associated UPS inhibition. Polyubiquitination can occur on multiple lysine residues of ubiquitin [43]. We mutated four of the lysine residues typically utilized for polyubiquitination by changing them to arginine (referred to as UbextKxR). Ubiquitin conjugation of UbextKxR was visualized by a distinct laddering pattern on a western blot (Figure 2B, black arrows). While none of the single point mutations prevented ubiquitination of Ubext, the double lysine mutant, UbextK29/48R, did prevent the conjugation (Figure 4A, black arrows).

We evaluated the degradation of the UPS substrates in the presence of the UbextKxR mutants. The expression of each single UbextKxR mutant stabilized the N-end rule substrate, R-β-gal (Figure 4B). However, the expression of the UbextK29/48R double mutant allowed for better degradation of the reporter protein, suggesting that the ubiquitination of Ubext is necessary to impair the degradation of the N-end rule substrate. The steady state levels of β-gal protein were detected by western blot and corroborated the result of the β-gal activity assay (Figure 4B, lower).

Next, we evaluated the degradation of the UFD substrate in the presence of the UbextKxR mutants. Each UbextKxR mutant,
including the double mutant (UbextK29/48R), impaired the degradation of the UFD reporter protein Ub-P-\beta-gal (Figure 4C). Since these data contradict the effects of UbextK29/48R on N-end rule substrate stability (Figure 4B) and previously published results with UBB+ [22], we evaluated another UFD substrate, a ubiquitin-GFP fusion (UbextK29/48R-GFP). Western blot analysis revealed that this UFD substrate was also stabilized by Ubext as well as each UbextKxR mutant, including the double mutant (Figure 4D). Taken together, these data demonstrate that the conjugation of Ubext is necessary to cause impaired degradation of an N-end rule substrate, but mono-Ubext (i.e. UbextK29/48R) can still impair the degradation of UFD substrates. Based on these data, we suggest that ubiquitin conjugation to N-end rule substrates and UFD substrates is different. The degradation pathways utilized for these two reporters are distinct [3, 31, 32], however they typically report on the same degradation competence of the proteasome, although differences have been cited under certain circumstances [29, 44, 45]. The observed differences here could be explained if different proteins interact with the substrates to perform the ubiquitin conjugation. Perhaps preformed ubiquitin chains are conjugated en masse to N-end rule substrates but ubiquitin is added sequentially to UFD substrates. Thus, in the presence of UbextK29/48R the substrates would be affected differently. Furthermore, this emphasizes that the mode of ubiquitin conjugation, which remains somewhat of a mystery [46], may be an important factor in the differential ability of the cells to cope with one UPS substrate versus another.

Disruption of the Hydrophobic Patch of Ubext Modulates Proteasomal Impairment of a UFD Substrate

Our data suggest that Ubext might be interacting with multiple components of the ubiquitin processing pathway, sequestering proteins required for efficient degradation of proteasome target substrates. Ubiquitin contains a hydrophobic patch (L8, I44 and V70) that is critical for its interaction with many other proteins and the proteasome [47, 48]. The ubiquitin mutation I44A disrupts the hydrophobic patch and this mutant fails to interact with some of its partner proteins [48]. We created a UbextI44A mutant and tested whether its expression caused UPS impairment. Cells expressing UbextI44A still stabilized the N-end rule substrate, R-\beta-gal (Figure 5A). However, expression of UbextI44A resulted in a modest, yet reproducible, increase in the degradation of UFD substrate Ub-P-\beta-gal (Figure 5B). This differential stabilization of the reporters did not occur with different type of mutant ubiquitin, UbAGG I44A (data not shown). These data suggest that the interaction of Ubext with other proteins is partially disrupted by mutating the hydrophobic patch and further supports that Ubext may have multiple interacting partners to impose the UPS impairment.

Challenging the UPS Decreases Cellular Tolerance to Ubext

The UPS is required for the removal of misfolded proteins. Failure to remove misfolded proteins can lead to aggregation and have detrimental phenotypic consequences. Since the expression of Ubext exacerbates UPS defects, we next analyzed whether the tolerance to misfolded proteins was decreased in cells expressing Ubext. Canavanine is an arginine analog which becomes incorporated into newly synthesized proteins and causes misfolding [49]. Serial dilutions of cells expressing Ubext were spotted onto solid medium containing canavanine. Ubext-expressing cells showed impaired growth on canavanine containing medium (Figure 6). This suggests that Ubext interferes with the ability of the UPS to degrade natural substrates and challenges cell viability when presented with misfolded proteins.

Expression of Ubext Affects the Cellular Tolerance to Toxic Aggregates but Does Not Affect Protein Aggregation

We next asked whether misfolded proteins that aggregate would present an additional challenge to cells expressing Ubext. Using tools and properties uniquely available in the yeast system, we sought to determine if Ubext affects protein aggregation by evaluating both toxic and non-toxic protein aggregates. Since cell death associated with toxic protein aggregates makes it difficult to evaluate the potential contribution of UPS dysfunction, the use of non-toxic aggregates in yeast could provide additional insight as to the direct effects of Ubext. UBB+ enhanced the aggregation and toxicity of a polyglutamine-expanded protein in cultured mammalian cells [24]. To perform similar experiments in our yeast model, we used a galactose-inducible expanded Huntingtin (Htt) polyglutamine construct, TOXIC-Q103, which creates a toxic protein aggregate [50, 51]. Cells expressing Ubext could only
tolerate a very low amount of TOXIC-Q103, and even with minimal induction, Ubext-expressing cells grew much worse in comparison to control cells (Figure 7A). Interestingly, the expression of UbextI44A did not result in the same enhanced protein aggregate toxicity (data not shown). Thus, partially alleviating the UPS impairment by altering Ubext protein interactions relieved the enhanced toxicity.

To determine whether Ubext expression might affect the aggregates themselves, we imaged a non-toxic version of a polyglutamine-expanded Htt protein fused to GFP (Htt\textsubscript{Q103}-GFP) [52]. Evaluation of these protein aggregates eliminates the complication of cell death associated with toxic aggregates. Previous studies have demonstrated that genetic manipulations, such as altering chaperone levels, can change the abundance and pattern of polyglutamine-GFP aggregates in cells [53]. Thus, we tested whether UPS dysfunction caused by the expression of Ubext would change the aggregate distribution. Neither the abundance nor the pattern of Htt\textsubscript{Q103}-GFP aggregates was altered in cells expressing Ubext (Figure 7B). Thus, although the expression of Ubext did enhance the cellular susceptibility to toxic aggregates, it did not grossly alter the formation or maintenance of non-toxic polyglutamine protein aggregates.

One mechanism by which Ubext could be enhancing the toxicity of TOXIC-Q103 could involve stabilization of the protein, as the level of expression directly correlates to the amount of toxicity.
The stability of TOXIC-Q103 protein was evaluated from cells expressing Ubext after protein translation was inhibited by cycloheximide. No drastic stabilization of TOXIC-Q103 protein was apparent in cells expressing Ubext (Figure 7C).

We next asked whether the TOXIC-Q103 aggregates themselves caused UPS impairment. The stability of the UPS reporter protein, Ub-P-\textgreek{b}gal, was monitored in cells containing TOXIC-Q103 aggregates in comparison to a non-pathological polyQ25 protein. No stabilization of the reporter was observed in cells harboring the toxic aggregates (Figure 7D). In addition, the UPS impairment caused by Ubext was not further increased by the presence of TOXIC-Q103 (Figure 7D). Thus, the enhanced toxicity of TOXIC-Q103 caused by Ubext is not due to additive effects on UPS impairment.

Enhanced Cellular Toxicity Is Observed with a Second Toxic Protein

To evaluate the generality of the effects of Ubext on the phenotypic response to toxic protein aggregates, we used a yeast prion protein. Prion proteins in yeast form ordered aggregates that are not harmful to the cells [54–56]. Sup35p, an essential termination factor, is the protein determinant of the yeast prion [57]. The aggregated prion state of Sup35p, [PSI+] prion state is not toxic, however, over expression of Sup35p in [PSI-] cells inhibits cell growth due to the lack of a stress-inducible heat shock protein. Protein lysate from Ubext-expressing cells limits the accumulation of an intermediate in the adenine biosynthetic pathway. Conversely, aggregated Sup35p in [PSI+] cells limits the amount of functional Sup35p, thereby causing nonsense suppression of the ade1-14 premature stop codon and translation of full-length Ade1 protein. These cells are adenine prototrophs and appear white on rich medium. As such, one can evaluate the functional state of Sup35p as it relates to protein aggregation by monitoring the color of the yeast colony. Cells can be maintained stably as [psi-], but they can be induced to become [PSI+] by over expressing the Sup35p protein.

The [PSI+] prion state is not toxic, however, over expression of Sup35p in [PSI+] cells inhibits cell growth due to the lack of sufficient translation termination [58–60]. As one would expect, the over expression of Sup35p is not toxic to [psi-] cells. Thus, the toxicity results from too much aggregation of Sup35p in the prion state. These toxic aggregates provide a means to assess the effects of aggregation of a protein of known function in combination with UPS dysfunction. Since most toxic protein aggregates cause cell death by unknown mechanisms, analyzing the Sup35p aggregates in [PSI+] cells provides a unique opportunity to dissect the contributions of the toxic protein aggregates and UPS dysfunction. To evaluate the effects of UPS dysfunction on toxic protein aggregates, [PSI+] cells harboring a copper-inducible SUP35 were transformed with Ubext and assayed for cell viability (Figure 8A).

The expression of [PSI+] cells were more susceptible to the over expression of Sup35p (Figure 8A, red box). The expression of Ubext did not increase basal levels of Sup35p, as determined by SDS-PAGE and western blot analysis (data not shown). Intriguingly, the expression of a different mutant ubiquitin protein, which caused UPS impairment similar to Ubext (data not shown), Ub\textgreek{m}GG, did not enhance the toxicity of Sup35p over expression to the same extent (Figure 8A, compare fourth row to sixth row). These results show that Ubext enhances the toxicity of protein aggregates by a mechanism that cannot be solely attributed to its effects on UPS impairment, since Ub\textgreek{m}GG did not have the same effect.

Furthermore, the hydrophobic domain mutant, UbextH4A, did not result in the same sensitivity to over expressed Sup35p in [PSI+] cells (Figure 8A). This suggests that the mechanism by which Ubext enhances the toxicity of protein aggregates requires interactions with other proteins via the hydrophobic domain.

We evaluated whether the aggregation of Sup35p is altered by the expression of Ubext. A previous study demonstrated that altering ubiquitin levels by either increasing the expression of ubiquitin or preventing its recycling caused an increase in the formation of the [PSI+] prion [61]. Furthermore, deletion of a ubiquitin conjugating enzyme also enhanced [PSI+] induction [62]. Thus, there is genetic precedence for perturbations of the UPS affecting prion protein aggregation. We asked whether the presence of Ubext would alter the spontaneous formation of aggregated Sup35p and change cells from [psi-] to [PSI+]. We did not observe a change in the spontaneous conversion rate (data not shown), which we have measured to be \textasciitilde1 in 10\textasciitilde in our strain [63]. We next evaluated the induction of the [PSI+] prion state in the presence and absence of Ubext by over expressing Sup35p in [psi-] cells. Since Ubext alters the UPS, one might predict an effect on the induction of protein aggregation. To the contrary, the expression of Ubext did not enhance the induction of [PSI+] (Figure 8B).

Expression of Ubext Does Not Cause a Stress Response

The enhanced toxicity of protein aggregates caused by Ubext could be the result of a general stress response elicited in cells expressing Ubext. The expression of a heat shock element (HSE)-\textgreek{b}gal\textgreek{Z} reporter fusion was evaluated in Ubext-expressing cells and no increase in transcription from the HSE promoter at 30°C or at a sub-lethal heat stress of 37°C was observed (data not shown). We next asked whether the presence of Ubext increased the translation of a stress-inducible heat shock protein. Protein lysate from Ubext-
expressing cells and control cells showed similar levels of Hsp104 protein (Figure 8C), a stress-responsive chaperone. Finally, we tested the tolerance of the cells to oxidative stress. Cells challenged with hydrogen peroxide showed no change in survival in the presence of UBext (Figure 8D). These results suggest that UBext expression in yeast neither induces a general stress response nor precondition the yeast to exogenous insult. Therefore, the enhanced susceptibility of UBext-expressing cells to toxic aggregates is not likely the result of UBext inducing a general stress.

Restoration of Translation Termination Rescues Enhanced Toxicity Caused by UBext

Overcoming the enhanced protein aggregate toxicity induced by UBext expression could shed light on the mechanism by which UBext exerts its affects. In attempts to alleviate the UBext-enhanced aggregate toxicity we conducted a genomic over expression screen using the toxicity caused by over expression of Sup35p in [PSH+] cells. We uncovered two rescuing factors, HSP104 and SUP35. Both of these proteins alleviate the toxicity by affecting Sup35p aggregation and the associated phenotypic readout. Over expression of Hsp104p affects the Sup35p aggregates [64] and Sup45p can sequester Sup35p aggregate away from the aggregates [65]. To verify that the enhanced protein aggregate toxicity in the presence of UBext can be overcome by altering nonsense suppression, we over expressed the C-terminal domain (CTD) of Sup35p, which is sufficient for translation termination but cannot aggregate and form or join the prion state [58,66]. We found that the expression of the CTD not only restored translation termination of [PSH+] cells (Figure 8E, upper), but also alleviated the enhanced toxicity caused by the expression of UBext (Figure 8E, lower). These results demonstrate that alleviating the primary deficit in the cells (i.e. the effects of [PSH+]) is sufficient to overcome toxicity even in the presence of a modifier (UBext).

Model to Explain Cellular Affects of UBext on Aggregate Toxicity

We next asked whether UBext affected the toxic Sup35p aggregates, since the enhanced cellular toxicity caused by UBext and excess Sup35p is [PSH+]-dependent. We assayed Sup35p aggregates by semi-denaturing detergent agarose gel electrophoresis (SDD-AGE) [67]. This technique allows large protein aggregates to migrate into the gel and can resolve aggregates of different sizes, as demonstrated by a strain variant of [PSH+] (weak [PSH+]), which harbors larger Sup35p aggregates than our [PSH+] starting strain (Figure 8F). We observed no change in the size of Sup35p aggregates from cells over expressing Sup35p in combination with UBext or UBAGG. One possible explanation for the enhanced toxicity in the presence of UBext could relate to a change in the degradation of misfolded Sup35p. As such, we asked whether UBext was promoting the accumulation of ubiquitinated-Sup35p. We reprobed the SDD-AGE membrane with an anti-ubiquitin antibody but did not find any ubiquitinated Sup35p by this approach. In additional attempts to look for ubiquitination of Sup35p, we purified Sup35p aggregates from cells expressing excess Sup35p (OE Sup35p) and expressing UBext, UBAGG, or containing an EV control were analyzed by SDD-AGE and western blot using an anti-Hsp104 antibody. Pgk1p expression was analyzed as a loading control. (D) The expression of UBext did not alter cell survival in the presence of oxidative stress. Cells containing EV, UBext, or UBext were treated with increasing concentrations of hydrogen peroxide (H2O2) and the number of viable cells was graphed as a percentage of the untreated. (E) The C-terminal domain of Sup35p (CTD) rescued the enhanced susceptibility caused by UBext in [PSH+] cells over expressing Sup35p. Upper: [PSH+]-mediated nonsense suppression is alleviated by expression of the CTD. [PSH+] cells containing EV show more nonsense suppression (the colony color is light pink). However, [PSH+] cells expressing the CTD display efficient translation termination and the colonies are red. Lower: [PSH+] cells expressing UBext in addition to excess Sup35p (induced by 50 μM copper) are rescued from death by the expression of the CTD. (F) Sup35 protein aggregates were not altered by the presence of UBext. Sup35p aggregates in strong [PSH+] (iPSH+)) and a weak strain variant of [PSH+] (w/PSH+)) were analyzed by SDD-AGE. The difference in Sup35p aggregate size of these prion strain variants can be appreciated by this method (compare [PSH+] to w/PSH+). Sup35p aggregates from cells expressing excess Sup35p (OE Sup35p) and expressing UBext, UBAGG, or containing an EV control were analyzed by SDD-AGE and western blot with an anti-Sup35 antibody.

Enhancing Protein Aggregate Toxicity by Increasing the Burden on the UPS

Based on our hypothesis, we predict that protein aggregate toxicity can be affected by perturbations in ubiquitination or by overwhelming the UPS in general. We took advantage of a temperature-sensitive ubiquitin activating enzyme (E1) mutant (ubal-204) [71] to evaluate the effect of an overall reduction in ubiquitination on the phenotypic response to TOXIC-Q103 aggregates. UbA1 is an essential gene responsible for the first step of the ubiquitination cascade. At the restrictive temperature, the uba1-204 mutant limits substrate ubiquitination. A recent study...
insoluble protein aggregates. UPS impairment caused by the expression of Ubext may hinder the rapid sequestration or retention of toxic oligomers is due to the inability of misfolded amyloidogenic proteins to be properly sequestered. The small soluble oligomers are more toxic than the large insoluble protein aggregates. UPS impairment caused by the expression of Ubext may hinder the rapid sequestration or retention of toxic oligomers into large protein aggregates.

doi:10.1371/journal.pgen.1000382.g009

We propose that this is due to a change in efficient sequestration of UPS in general do appear to enhance protein aggregate toxicity.

Ubext Alters Ubiquitination Patterns

Since altered ubiquitination affected the distribution of expanded polyglutamine proteins [70] and enhanced the cellular susceptibility to toxic polyglutamine aggregates (Figure 10A), we asked whether Ubext has a direct effect on the ubiquitination of proteosome substrates. In light of the fact that the toxic protein aggregates are not ubiquitinated, we evaluated the ubiquitination pattern of the UPS reporters. To compare the ubiquitination of these constructs with and without the expression of Ubext, we utilized a temperature-sensitive proteasome mutant strain [pre1-1 pre2-2] [28]. This strain is defective in proteolysis and when grown at the restrictive temperature, R-βgal and Ub-P-βgal accumulate (Figure 11A). Striking substrate ubiquitination can be observed in pre1-1 pre2-2 cells expressing Ubext and control cells after IP. When we compared the R-βgal substrate ubiquitination in EV and Ubext-containing cells, we did not discern any difference in the ubiquitination pattern (Figure 11A). However, a subtle yet reproducible ubiquitination pattern difference was seen with the Ub-P-βgal substrate (Figure 11B). Three independent IP experiments are shown and two ubiquitinated-βgal bands appear in control cells (EV) which are absent or greatly reduced in Ubext-expressing cells. The altered ubiquitination pattern of some UPS substrates in the presence of Ubext could change the ability of these proteins to be processed by the proteasome. Furthermore, such changes could be an important modifier of the cellular effects of toxic protein aggregates.

Discussion

We created a novel model of UBB+1 by constitutively expressing an analogous mutant ubiquitin protein in yeast to

Figure 9. Model for Ubext affects on toxic protein aggregates. We propose that enhanced protein aggregate toxicity in Ubext-expressing cells is due to the inability of misfolded amyloidogenic proteins to be properly sequestered. The small soluble oligomers are more toxic than the large insoluble aggregate proteins. UPS impairment caused by the expression of Ubext may hinder the rapid sequestration or retention of toxic oligomers into large protein aggregates.

doi:10.1371/journal.pgen.1000382.g009

Figure 9. Model for Ubext affects on toxic protein aggregates. We propose that enhanced protein aggregate toxicity in Ubext-expressing cells is due to the inability of misfolded amyloidogenic proteins to be properly sequestered. The small soluble oligomers are more toxic than the large insoluble aggregate proteins. UPS impairment caused by the expression of Ubext may hinder the rapid sequestration or retention of toxic oligomers into large protein aggregates.

We created a novel model of UBB+1 by constitutively expressing an analogous mutant ubiquitin protein in yeast to

Figure 9. Model for Ubext affects on toxic protein aggregates. We propose that enhanced protein aggregate toxicity in Ubext-expressing cells is due to the inability of misfolded amyloidogenic proteins to be properly sequestered. The small soluble oligomers are more toxic than the large insoluble aggregate proteins. UPS impairment caused by the expression of Ubext may hinder the rapid sequestration or retention of toxic oligomers into large protein aggregates.

We created a novel model of UBB+1 by constitutively expressing an analogous mutant ubiquitin protein in yeast to

Figure 9. Model for Ubext affects on toxic protein aggregates. We propose that enhanced protein aggregate toxicity in Ubext-expressing cells is due to the inability of misfolded amyloidogenic proteins to be properly sequestered. The small soluble oligomers are more toxic than the large insoluble aggregate proteins. UPS impairment caused by the expression of Ubext may hinder the rapid sequestration or retention of toxic oligomers into large protein aggregates.
investigate the causal relationship between this proteasomal inhibitor and protein aggregation. We demonstrated that the Ubext mutant was not functional as ubiquitin and was not deleterious to the cells. Importantly, the expression of Ubext in yeast caused impairment of the UPS. Since proteasome dysfunction can lead to protein aggregation, we were intrigued that the presence of Ubext served to neither induce nor alter non-toxic protein aggregates in yeast. However, the expression of Ubext rendered the cells more susceptible to toxic protein aggregates, and this could not be attributed to an increase in general stress elicited by Ubext. We propose that the reduced UPS functionality and altered ubiquitination of UPS substrates in Ubext-expressing cells creates an environment in which toxic amyloidogenic proteins either cannot join or are not maintained as large insoluble aggregates. As a result, protein aggregate toxicity is enhanced due to an increase in soluble or oligomeric toxic protein. Thus, this yeast model system revealed that Ubext is a phenotypic modifier of toxic protein aggregates. This genetically tractable model provides a platform to further dissect how UBB+1 affects the cellular tolerance to toxic protein aggregates.

Figure 10. Protein aggregate toxicity is enhanced by perturbations of the UPS and protein aggregate solubility is enhanced by Ubext. (A) Limiting ubiquitination also decreases cellular survival in the presence of TOXIC-Q103. Cellular viability of TOXIC-Q103 (103) or the Q25 control expressed in ts uba1-204 cells was measured at the permissive temperature (30°C) and a restrictive temperature (32°C). The graph represents the percentage of viable cells from the inducing plates compared to cells grown on non-inducing medium. The asterisk (*) indicates statistical significance between 25 and 103 at 30°C (p = 0.0007), the cross (+) indicates statistical significance between 25 and 103 at 32°C (p = 0.0003), and the double asterisk (**) indicates statistical significance between 103 at 30°C and 32°C (p = 0.0068). (B) Increasing misfolded proteins enhanced toxicity in the presence of TOXIC-Q103. Cell expressing TOXIC-PQ103 (103) and the Q25 control (25) were spotted onto inducing medium and inducing medium containing 200 μM canavanine (Can). (C) The cellular susceptibility of over expressed Sup35p in [PSI+] cells in the presence of canavanine is not as detrimental as the co-expression of Ubext. Cells expressing excess Sup35p (induced with 200 μM CuSO4) were spotted onto plates containing 400 μM canavanine (Can). Sup35 over expressing cells are slightly less viable in the presence of 400 μM canavanine. All cells died at higher concentrations of CuSO4 and canavanine. (D) Cells expressing Ubext contain more soluble TOXIC-Q103 protein. Cells expressing TOXIC-Q103 in the presence of Ubext or absence (EV) were lysed and the soluble protein was analyzed by western blot after high speed ultracentrifugation. Densitometry was performed to determine the amount of soluble TOXIC-Q103 protein normalized to the total protein for each sample and graphed in relative arbitrary units. Three independent cultures for each sample were analyzed. The asterisk (*) denotes statistical significance (p = 0.0052).

Figure 11. Ubext alters the ubiquitination pattern of a UPS substrate. (A) R-βgal ubiquitination pattern is not altered in cells expressing Ubext. pGalUb-R-LacZ was transformed into proteasome mutant cells (pre1-1 pre2-2) expressing Ubext or EV and R-βgal was analyzed by immunoprecipitation (IP). Membranes were probed with anti-βgal and anti-ubiquitin antibodies. Arrow indicates full length βgal protein. (B) Ub-P-βgal ubiquitination is affected in cells expressing Ubext. Ub-P-βgal IPs were performed as in A. A subtle but reproducible difference in ubiquitination pattern was observed. Three independent IPs are shown. Arrowheads highlight distinct bands present in the EV lanes that are absent in Ubext lanes.

doi:10.1371/journal.pgen.1000382.g010

doi:10.1371/journal.pgen.1000382.g011
The mechanism of UPS impairment caused by UBB+1 is not well understood. We asked whether Ubext causes a reduction in proteasome activity. Using an unstable ubiquitin-independent substrate (GFP-ODC) [37], we observed no significant change in the activity of the proteasome in Ubext-expressing cells. Based on this result, we suggest that Ubext is not clogging the core of the proteasome and propose that Ubext is interacting with other components of the ubiquitin processing cascade or with the regulatory cap of the proteasome. We hypothesized that disrupting the interaction of Ubext with component(s) of the ubiquitin processing pathway would alleviate the proteasomal impairment. Mutational analysis revealed that ubiquitin conjugation and the hydrophobic patch affect the extent to which Ubext causes UPS impairment. Interestingly, the effects were distinct with different substrates. This supports the idea that Ubext is interacting with multiple components of the UPS; reduction of its interaction via the hydrophobic patch or elimination of its ubiquitination weakened some of the observed effects but not others.

Previous studies have investigated the connection between UPS dysfunction and protein aggregation, especially in the context of protein conformational diseases [72]. It remains difficult, however, to discern the precise nature of the causal relationship between protein aggregation and proteasomal impairment. Evidence that UBB+1 and other disease-associated mutations in the UPS can cause proteasomal impairment and increase protein aggregation supports the idea that proteasome dysfunction plays a stimulatory role in protein aggregation. However, in some cases, such as that with mutant Parkin in familial Parkinson’s Disease, decreased UPS function is not associated with protein aggregation [8]. Using non-toxic protein aggregates in yeast, we have demonstrated that a UBB+1-like protein, Ubext, neither induced nor changed protein aggregates. Our results provide evidence that a compromised UPS does not necessarily affect protein aggregation per se but can cause phenotypic effects by decreasing cellular tolerance to deleterious protein aggregates.

We hypothesize that Ubext is altering the sequestration of aggregated proteins (Figure 9). Due to the altered substrate ubiquitination and the general UPS impairment caused by Ubext, misfolded proteins are not efficiently degraded and somehow perturb the sequestration of amyloidogenic proteins into the insoluble aggregates which may have a protective function. How the UPS functionality plays a role in the ability of the cell to efficiently sequester non-ubiquitinated proteins remains to be elucidated. One recent study suggests that different cellular compartments retain aggregates of ubiquitinated and non-ubiquitinated proteins and a reduction in UPS activity can cause a change in this localization [69]. If proper localization of aggregated proteins protects the cell from smaller toxic oligomeric species [73,74], then the inability of toxic oligomers to be efficiently sequestered would be deleterious (Figure 9). Indeed, the expression of Ubext resulted in an increase in the relative amount of soluble TOXIC-Q103 protein (Figure 10D) and the combination of Ubext and TOXIC-Q103 was more deleterious to cell survival (Figure 7A). Further evidence to support the idea that the redistribution of aggregates can lead to cell death comes from a recent report investigating the nature of the aggregates formed in response to the expression of expanded polyglutamine protein in yeast [70]. A single large aggregate, an aggresome-like structure, was formed by polyglutamine proteins that were not toxic to the cells. When the large aggregate was unable to form, multiple small aggregates were observed and the appearance of these correlated with toxicity. Thus, the single large aggregate appears to be protective against polyglutamine protein aggregate toxicity. Among the cellular factors found that could disrupt the formation of the single aggregate when mutated were two ubiquitin-associated proteins. Furthermore, limiting general cellular ubiquitination by the uba1-204 mutant also disrupted the formation of the large aggregate [70]. We show that uba1-204 enhanced the cellular toxicity of the toxic polyglutamine aggregates used in our study (Figure 10A). Taken together, the data support the proposed model of the effect of Ubext on protein aggregate toxicity (Figure 9).

Since Ubext causes UPS impairment and a change in ubiquitination of substrates, this could cause the mis-handling or redistribution of some ubiquitin-conjugated proteins and hinder toxic protein aggregates from being rapidly sequestered, resulting in cell death (Figure 9). Thus, even though the toxic protein aggregates may not be substrates of the UPS, perturbations in the processing of normal UPS substrates may affect cellular tolerance to toxic aggregates. Our data suggest that all perturbations in the UPS are not equally potent at altering the cellular tolerance to toxic aggregates. Therefore, we conclude that the magnitude of the enhanced protein aggregate toxicity in the presence of the extended mutant ubiquitin is exceptional. This is likely due to its interactions with other proteins and supports further that UBB+1 may be a potent disease modifier.

Since protein conformational disorders result from a combination of cellular perturbations, often including the unknown effects of aging, then eliminating individual modifiers or enhancers may prove useful for disease therapy. Obviously, alleviating the primary causative agent, when known, could prove to be the most beneficial. For example, when we used the Sup35p toxic aggregate model we were able to rescue the Ubext-enhanced toxicity by restoring the loss of function caused by Sup35p sequestration into aggregates. However, in many protein conformational diseases, the function of the proteins found in the aggregates and cellular toxicity is not understood. Therefore, investigating ways to alleviate the effects of known modifiers represents an important therapeutic avenue for disease treatment and prevention. The insight gained by developing a yeast model of UBB+1 has provided a means to further investigate the role of protein aggregate compartmentalization in toxicity, which may underlie some of the effects observed in cells or tissues experiencing chronic UPS impairment. The identification of UBB+1-interacting proteins may allow for the elucidation of the mechanism whereby a natural modifier of UPS function affects cellular tolerance to toxic protein aggregates.

Materials and Methods

Strains

Yeast strains were grown and manipulated by standard techniques [75]. Unless otherwise indicated, all yeast strains used in this study were derivatives of 74-D694 [MATa or MATα ade1-14 trpl-289 his3A-200 ura3-52 leu2-3,112] [64]. The Δubi1 strain was created by PCR amplification of the antibiotic resistance marker KanMX4 with primers A and B and subsequent transformation of the resulting product into 74-D694. For all primer sequences, see Table 1. The Aupb14 strain was created by PCR amplification of BY4741 Aupb14 genomic DNA with primers C and D and subsequent transformation of the resulting product into 74-D694. The proteasome mutant strain, WCG4+11/22a [MATa his3-11,15 leu2-3,112 ade1-1 pre2-2] and control strain, WCG4a (MATa his3-11,15 leu2-3,112 ade1-1) were a kind gift of P. Coffino [37]. The 74-D694 [PSH+]-inducible prion strain [pi−] [RvO+] and the weak [PSH+] strain variant were a kind gift from S. Lieberman [76]. A 74-D694 [PSH+] [RvO+] strain was used in the PQ toxicity study. The uba1-204 strain was a kind gift from R. Deshaies [71].
Plasmids

All plasmids were created using standard molecular biology protocols [77] and verified by DNA sequencing. For primer sequences, refer to Table 1. Where appropriate, the enzyme used is listed parenthetically. To create p413TEFUbext, ubiquitin was PCR amplified from 74-D694 genomic DNA using primers E and Q and cloned into p413TEFUb. Ubiquitin was subcloned from p413TEFUb to p423TEF and p426TEF at SalI and HindIII. All Ubext amino acid substitutions (p426TEFUbi4*K29R, Ubext*K29R, Ubext*K48R, Ubext*K63R, Ubext*K29/48R, Ubext*K29/48R*) were created using either three-way ligation with cut p423TEF vector. Used in three-way ligation with cut p423TEF vector.

<table>
<thead>
<tr>
<th>Code</th>
<th>Used to make (enzyme)</th>
<th>Sequence (5’ orientation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ubiquitin deletion</td>
<td>GGATATTATATAGAAGGCTGGGTTTCCACCTTTGAAATTGCCGCTTACGTCAGTCCGAC</td>
</tr>
<tr>
<td>B</td>
<td>ubiquitin deletion</td>
<td>GGGTATATATAGAAGGCTGGGTTTCCACCTTTGAAATTGCCGCTTACGTCAGTCCGAC</td>
</tr>
<tr>
<td>C</td>
<td>ubiquitin deletion</td>
<td>GAGGATATTATATAGAAGGCTGGGTTTCCACCTTTGAAATTGCCGCTTACGTCAGTCCGAC</td>
</tr>
<tr>
<td>D</td>
<td>ubiquitin deletion</td>
<td>GGGTATATATAGAAGGCTGGGTTTCCACCTTTGAAATTGCCGCTTACGTCAGTCCGAC</td>
</tr>
<tr>
<td>E</td>
<td>5’ Ub (XbaI)</td>
<td>GCT CTA GAA TGC AGA TTT TCG TCA AGA C</td>
</tr>
<tr>
<td>F</td>
<td>3’ Ub* (BamHI)</td>
<td>CCGGATCTTACAAAAGAAGTCTGATACACCCCTTACCTTACGCAAGCAGTAAGGT</td>
</tr>
<tr>
<td>G</td>
<td>5’ Ub (BamHI)</td>
<td>CCGGATCTTACAAAAGAAGTCTGATACACCCCTTACCTTACGCAAGCAGTAAGGT</td>
</tr>
<tr>
<td>H</td>
<td>3’ Ub (SalI)</td>
<td>GCGGATCTTACAAAAGAAGTCTGATACACCCCTTACCTTACGCAAGCAGTAAGGT</td>
</tr>
<tr>
<td>I</td>
<td>5’ Ub* (SalI) K11R (BamHI)</td>
<td>CCGGATCTTACAAAAGAAGTCTGATACACCCCTTACCTTACGCAAGCAGTAAGGT</td>
</tr>
<tr>
<td>J</td>
<td>3’ Ub* (SalI)</td>
<td>GCGGATCTTACAAAAGAAGTCTGATACACCCCTTACCTTACGCAAGCAGTAAGGT</td>
</tr>
<tr>
<td>K</td>
<td>5’ Ub* K29R*</td>
<td>GCGGATCTTACAAAAGAAGTCTGATACACCCCTTACCTTACGCAAGCAGTAAGGT</td>
</tr>
<tr>
<td>L</td>
<td>3’ Ub* K29R*</td>
<td>GCGGATCTTACAAAAGAAGTCTGATACACCCCTTACCTTACGCAAGCAGTAAGGT</td>
</tr>
<tr>
<td>M</td>
<td>5’ Ub* K48R*</td>
<td>GCGGATCTTACAAAAGAAGTCTGATACACCCCTTACCTTACGCAAGCAGTAAGGT</td>
</tr>
<tr>
<td>N</td>
<td>3’ Ub* K48R*</td>
<td>GCGGATCTTACAAAAGAAGTCTGATACACCCCTTACCTTACGCAAGCAGTAAGGT</td>
</tr>
<tr>
<td>O</td>
<td>3’ Ub* K363R*</td>
<td>GCGGATCTTACAAAAGAAGTCTGATACACCCCTTACCTTACGCAAGCAGTAAGGT</td>
</tr>
<tr>
<td>P</td>
<td>3’ Ub* +GG (SalI)</td>
<td>GCGGATCTTACAAAAGAAGTCTGATACACCCCTTACCTTACGCAAGCAGTAAGGT</td>
</tr>
<tr>
<td>Q</td>
<td>3’ Ub AGG (SalI)</td>
<td>GCGGATCTTACAAAAGAAGTCTGATACACCCCTTACCTTACGCAAGCAGTAAGGT</td>
</tr>
<tr>
<td>R</td>
<td>3’ Ub* M44A*</td>
<td>GCGGATCTTACAAAAGAAGTCTGATACACCCCTTACCTTACGCAAGCAGTAAGGT</td>
</tr>
<tr>
<td>S</td>
<td>5’ Ub* M44A*</td>
<td>GCGGATCTTACAAAAGAAGTCTGATACACCCCTTACCTTACGCAAGCAGTAAGGT</td>
</tr>
</tbody>
</table>

*Used in three-way ligation with cut p423TEF vector.

Protein Analyses

Protein lysates were analyzed by standard SDS-PAGE. Protein lysis followed the β-galactosidase assay (see below). The following antibodies were used: Ubiquitin (PD1) (Santa Cruz sc-8017), Hsp104 (kind gift of S. Lindquist), GFP (kind gift of M. Linder), β-galactosidase (Promega Z378A), Ppk1 (Molecular probes A6457), and Sup35 (kind gift of S. Lindquist) [81]. Large Sup35 protein aggregates were separated by SDD-AGE, as previously described [82] with modifications previously described [63]. Sup35p over expression was achieved by growing the cultures in 50 µM copper sulfate overnight. Immunoprecipitations were carried out as previously described [63] using 5 µl of mouse anti-β-galactosidase. TOXIC-Q103 protein stabilization was measured after a six hour induction (2% galactose and 1% raffinose containing media) in the presence of 0.5 mg/ml cycloheximide in cultures with equal numbers of cells.

The relative amount of TOXIC-Q103 soluble protein was determined by slot blot. Cells containing TOXIC-Q103 and either EV or Ubext were grown overnight in selective medium, washed in inducing medium containing 2% galactose/1% raffinose and...
induced for 14–16 hours. Cells were harvested and lysed with glass beads in PEB (250 mM Tris, 50 mM KCl, 10 mM MgCl2, 1 mM EDTA, 10% glycerol, 10 mM FMSF, 5 μg/ml Aprotinin, Roche Protease cocktail inhibitor (Roche)). Equal protein (100 μg) from EV and Ubext-containing cells was subjected to ultracentrifugation (50,000 rpm for 30 minutes at 4°C). Serial dilutions of the supernatant and total fractions (diluted 1/10) were applied to activated PVDF and probed with an anti-GFP antibody. The supernatant fraction and corresponding total fractions were quantified using Image J software and graphed as

β-Galactosidase Assays

UPS functionality was determined by the degradation of Ub-LacZ fusions [30] using Galacto-light™ (Applied Biosystems). Cells containing pGal-Ub-M-LacZ, pGal-Ub-R-LacZ and pGal-Ub-P-LacZ were grown in selective medium for 24 hours. The cultures were washed three times in selective medium containing 2% galactose / 1% raffinose and grown overnight in the 2% galactose / 1% raffinose. The cultures were harvested and lysed in Galacto-light Lysis Solution using glass beads. Cell lysate was pre-cleared for 30 seconds at 6,000 rpm at 4°C. In a flat bottom, black-sided 96-well dish, 70 μl of Galacto Reaction Buffer was added to 10 μl of protein lysate and incubated for 60 minutes at room temperature. Luminescence was read immediately after the addition of 100 μl of Light Emission Accelerator. Luminescence values were normalized to protein concentration as determined by Bradford reagent (BioRad). Error bars in all βgal activity assays represent the standard deviation from three independent cultures for each sample. The TOXIC-Q103 protein βgal activity assay was conducted as described above using a TRP1 version of pGal-Ub-P-LacZ (subcloned into p424Gal vector) with a 24 hour induction. All statistical analyses were conducted using Student’s T-Test.

Microscopy

Polyglutamate aggregation was monitored by GFP fluorescence in a 74-D694 [PSH+] [RVQ+] strain background. Three independent samples of mid-log phase cells containing p16GPD polyQ103-GFP [52] and p423TEF EV or p423TEF Ubext were visualized. Individual fluorescent cells were evaluated for a single aggregate, few aggregates (2–3 per cell) or multiple aggregates (greater than 3 aggregates per cell) as previously described [53]. Approximately 200 cells were analyzed for each sample in triplicate. Error bars represent the standard deviation.

Phenotypic Analysis

Hydrogen peroxide resistance. An equal number of mid-log phase cells containing p423TEF EV, p423TEF Ub or p423TEF Ubext were treated with various concentrations (1 mM, 1.5 mM, 2 mM, 2.5 mM, 3 mM, and 4 mM) of hydrogen peroxide for 30 minutes at 30°C in liquid selective medium. Cells were diluted (1:5000) and plated on selective medium. Viable cells were counted and normalized to the non-treated sample. Error bars represent the standard deviation of three independent cultures for each construct in each condition.

Proteasome mutant strain synthetic lethality. The proteasome mutant strain (WCG11-22a) and control strain (WCGa) containing p423TEF EV, p423TEF Ub or p423TEF Ubext were grown overnight in selective medium at 30°C and five-fold serial dilutions of the cultures were spotted on selective medium and grown at 30°C and 37°C.

Canavanine treatment. Cells containing p423TEF EV, p423TEF Ub or p423TEF Ubext were grown overnight in selective medium. Five fold serial dilutions of cultures were spotted onto selective medium containing 200 or 400 μM canavanine. Cells containing TOXIC-Q103, Q25, pRS315EV or pRS315Cup-Sup35 were grown overnight in selective medium. Five fold serial dilutions of cultures were spotted onto selective media containing the indicated amount of copper sulfate and canavanine or galactose and canavanine.

[PSH+] induction. Three independent cultures of 74-D694 [PSH+] [RVQ+] cells containing pEMBL Sup2 [50] in addition to p423TEF EV, p423TEF Ub or p423TEF Ubext were grown overnight in selective medium to an OD600nm~1.5. The cultures were diluted and plated on YPD, where ~2,000 colonies were scored for prion induction. Error bars represent the standard deviation.

Toxic polyglutamine aggregation. [PSH+] [RVQ+] cells containing p146Gal FLAG103Q CFP or p146Gal FLAG25Q CFP [50,51] and p423TEF EV, p423TEF Ub or p423TEF Ubext were grown overnight in selective medium. The cultures were diluted five-fold and spotted on selective media containing 0.1% or 0.3% galactose with 1% raffinose.

Toxic Sup35p over expression. 74-D694 [PSH+] [RVQ+] cells containing pRS315Cup-EV or pRS315Cup-Sup35 and p423TEF EV, p423TEF Ub or p423TEF Ubext were grown overnight in selective medium. Cultures were diluted five-fold and spotted on selective medium containing 50 μM or 100 μM copper sulfate. pRS315TEF-CtermSup35 or control pRS315 EV were transformed into Ubext-expressing cells containing pRS315Cup-Sup35 and plated on selective medium containing 50 μM copper sulfate.

Acknowledgments

We thank the members of the True lab, C. Weihe, D. Harris, J. Cooper, M. Linder, and J. Weber for helpful discussions and critical reading of the manuscript. We are grateful for the technical assistance provided by J. Purdy and R. Boutilier. We thank many people for reagents, equipment and advice: P. Coffino, S. Liebman, R. Deshaies, S. Lindquist, M. Duenwald, A. Varshavsky, M. Linder, J. Glover, K. Weilbacher, and M. Hochstrasser.

Author Contributions

Conceived and designed the experiments: EMHT HLT. Performed the experiments: EMHT. Analyzed the data: EMHT HLT. Wrote the paper: EMHT HLT.

References

