Beyond 30 days: Does limiting the duration of surgical site infection follow-up limit detection?

Julie D. Lankiewicz
Harvard University

Deborah S. Yokoe
Harvard University

Margaret A. Olsen
Washington University School of Medicine in St. Louis

Fallon Onufrak
Harvard University

Victoria J. Fraser
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Part of the [Medicine and Health Sciences Commons](https://digitalcommons.wustl.edu/open_access_pubs)

Recommended Citation

Lankiewicz, Julie D.; Yokoe, Deborah S.; Olsen, Margaret A.; Onufrak, Fallon; Fraser, Victoria J.; Stevenson, Kurt; Khan, Yosef; Hooper, David; Platt, Richard; and Huang, Susan S., "Beyond 30 days: Does limiting the duration of surgical site infection follow-up limit detection?" *Infection Control and Hospital Epidemiology*. 33,2. 202-204. (2012).
https://digitalcommons.wustl.edu/open_access_pubs/786

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Beyond 30 Days: Does Limiting the Duration of Surgical Site Infection Follow-up Limit Detection?

Author(s): Julie D. Lankiewicz, Deborah S. Yokoe, Margaret A. Olsen, Fallon Onufrak, Victoria J. Fraser, Kurt Stevenson, Yosef Khan, David Hooper, Richard Platt, Susan S. Huang

Reviewed work(s):

Source: *Infection Control and Hospital Epidemiology*, Vol. 33, No. 2 (February 2012), pp. 202-204

Published by: The University of Chicago Press on behalf of The Society for Healthcare Epidemiology of America

Stable URL: http://www.jstor.org/stable/10.1086/663715

Accessed: 03/03/2012 15:56

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Beyond 30 Days: Does Limiting the Duration of Surgical Site Infection Follow-up Limit Detection?

Concern over consistency and completeness of surgical site infection (SSI) surveillance has increased due to public reporting of hospital SSI rates and imminent nonpayment rules for hospitals that do not meet national benchmarks.\(^1\) Already, hospitals no longer receive additional payment from the Centers for Medicare and Medicaid Services (CMS) for certain infections following coronary artery bypass graft (CABG) surgery, orthopedic procedures, and bariatric surgery.\(^2\)

One major concern is incomplete and differential postdischarge surveillance. At present, substantial variation exists in how and whether hospitals identify SSI events after the hospitalization in which the surgery occurred. Parameters used for SSI surveillance such as the duration of the window of time that surveillance takes place following the surgical procedure can impact the completeness of surveillance data. Determination of the optimal surveillance time period involves balancing the potential increased case ascertainment associated with a longer follow-up period with the increased resources that would be required. Currently, the time window for identifying potentially preventable SSIs related to events at the time of surgery is not fully standardized. The Centers for Disease Control and Prevention National Healthcare Surveillance Network requires a 365-day postoperative surveillance period for procedures involving implants and a 30-day period for nonimplant procedures.\(^3\) In contrast, the National Surgical Quality Improvement Program and the Society of Thoracic Surgeons systems employ 30-day postoperative surveillance regardless of implant. As consensus builds toward national quality measures for hospital-specific SSI rates, it will be important to assess the frequency of events beyond the 30-day postsurgical window that may quantify the value of various durations of surveillance and ultimately inform the choice of specific outcome measures.

We evaluated the fraction of deep and organ-space SSIs detected beyond 30 days following CABG, orthopedic procedures, and mastectomy with implant surgical procedures to inform whether a longer SSI surveillance time period identifies sufficient additional SSI cases to warrant additional surveillance resources.

SSIs were identified as part of retrospective cohort studies at 5 hospitals following total hip replacements (THR) and total knee replacements (TKR) performed from January 1, 2007, to December 31, 2007.\(^4\) SSIs with onset of infection within 365 days of surgery were identified by (a) routine surveillance by hospital infection prevention programs, which was not standardized and commonly involved a combination of review of microbiology records and evaluation of readmissions or reoperations that came to attention, and (b) cases flagged by a previously validated algorithm involving antibiotic data, administrative diagnostic codes, and readmission criteria.\(^5\)

Previously identified post-CABG SSIs were identified from a 2005 retrospective cohort study of Medicare beneficiaries undergoing CABG in US hospitals ranked in the top and bottom deciles based on case mix–adjusted probabilities of an SSI-related claim code within 60 days of surgery. The Romano score was used for case mix adjustment and was demonstrated as a significant predictor of SSI.\(^6\) Randomly selected medical records were reviewed for SSI.

Last, we evaluated previously identified SSI cases following mastectomy procedures involving implantation of prosthetic

Figure 1. Distribution of time to onset of deep-incisional (DI) and organ space (OS) surgical site infections (SSIs) following total knee replacement (TKR), total hip replacement (THR), mastectomy with implant reconstruction, and coronary artery bypass grafting (CABG) surgeries. Duration of postprocedure follow-up for DI/OS SSI was 365 days for TKR, THR, and mastectomy with implant and 60 days for CABG. An asterisk indicates that the surveillance window was limited to 60 days for CABG.
material from an academic medical center (August 2005–December 2007). Data were collected from the surgical admission, readmissions, and clinic visits within 1 year of surgery.7 All SSIs were limited to those involving deep-incisional (DI) or organ/space (OS) infections. Time from surgery to SSI onset was calculated for all SSIs and grouped into less than or equal to 30 days and 31–60 days for CABG, while TKR, THR, and mastectomy procedures included additional groupings of 61–90 and 91–365 days.

We identified 27 SSIs following 1,666 TKRs, 21 SSIs following 1,691 THRs, 477 SSIs following 23,376 CABGs, and 54 SSIs following 327 mastectomies with implants (Figure 1). Based on these identified SSIs, TKR required 60 days to identify the majority of cases.8 By 90 days after procedure, 100% of known DI/OS SSIs were identified for THR, 70% of DI/OS SSIs for TKR, and 87% of DI/OS SSIs for mastectomy with implants. Limiting postoperative SSI surveillance to 30 days would lead to underreporting of approximately one-quarter to two-thirds of DI/OS SSIs across the 4 procedures surveyed. Confining postoperative SSI surveillance to 60 days, as was done for all CAGB procedures, results in detection of the vast majority of DI/OS SSIs following THR and mastectomy-plus-implant procedures but only half of DI/OS SSIs following TKR. In contrast, a 90-day window detected most DI/OS SSIs across these 3 procedures. A limitation of all SSI estimates across THR, TKR, and mastectomy-plus-implant procedures was that follow-up was confined to the hospital where the index procedure was performed. Therefore, results represent minimum estimates of infection because postdischarge outpatient events and SSIs identified at other hospitals were not captured. In contrast, the use of insurer claims to identify CAGB SSIs regardless of the location of medical care would allow for more confidence that all medically attended DI/OS infections were captured.6

Impending CMS SSI surveillance measures for mandatory reporting should consider including DI/OS SSI surveillance periods for TKR, THR, CAGB, and mastectomy-plus-implant procedures beyond 30 days. Nevertheless, additional research is needed to assess whether resources to extend surveillance to 365 days after procedures is prudent, given limited resources, the fact that most DI/OS SSIs are captured within 90 days, and the uncertainty whether SSIs occurring that long after surgery are in fact due to preventable issues at the time of the operation.

Regardless of which duration of postdischarge surveillance is selected, assurance that hospitals are conducting postdischarge surveillance using standardized methods is necessary for interhospital comparison. Training and validation to ensure similarly comprehensive SSI capture across hospitals is critical for valid public reporting used to determine Medicare payment. In addition, comparison and improvement of existing case mix adjustors should be performed to properly account for different patient population risks for SSI. Early successful explorations into the use of large networks of claims-based databases appear promising in this regard since both case mix adjustment and claims-based algorithms to trigger chart review have been shown to be superior to routine surveillance performed by hospital infection prevention programs for SSI detection and can be used to standardize post-discharge SSI surveillance.6,9,10

ACKNOWLEDGMENTS

Financial support. This study was funded by the Centers for Disease Control and Prevention Prevention Epicenters Programs U01CI000344 (R.P.) and U01CI000333 (V.J.F.) and National Institutes of Health career development awards to M.A.O. (K01AI065808) and V.J.F. (K24AI067794).

Potential conflicts of interest. All authors report no conflicts of interest relevant to this article. All authors submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest, and the conflicts that the editors consider relevant to this article are disclosed here.

Julie D. Lankiewicz, MPH; Deborah S. Yokoe, MD, MPH; Margaret A. Olsen, PhD, MPH; Fallon Onufrak, BS; Victoria J. Fraser, MD, FACP; Kurt Stevenson, MD, MPH; Yosef Khan, MD, MPH; David Hooper, MD; Richard Platt, MD, MS; Susan S. Huang, MD, MPH; Margaret A. Olsen, PhD, MPH; Fallon Onufrak, BS; Victoria J. Fraser, MD, FACP; Kurt Stevenson, MD, MPH; Yosef Khan, MD, MPH; David Hooper, MD; Richard Platt, MD, MS; Susan S. Huang, MD, MPH.

Affiliations: 1. Department of Population Medicine, Harvard Medical School, and Harvard Pilgrim Health Care Institute, Boston, Massachusetts; 2. Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts; 3. Division of Infectious Diseases, Department of Medicine, and Division of Population Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; 4. Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; 5. Ohio State University Medical Center, Columbus, Ohio; 6. Massachusetts General Hospital, Boston, Massachusetts; 7. Division of Infectious Diseases and Health Policy Research Institute, University of California Irvine School of Medicine, Irvine, California.

Address correspondence to Julie D. Lankiewicz, MPH, Department of Population Medicine, 133 Brookline Avenue, 6th Floor, Boston, MA 02215 (julie_lankiewicz@hphc.org).

Received August 24, 2011; accepted October 17, 2011; electronically published December 20, 2011.

Infect Control Hosp Epidemiol 2012;33(2):202-204

© 2011 by The Society for Healthcare Epidemiology of America. All rights reserved. 0899-823X/2012/3302-0017$15.00. DOI: 10.1086/663715

REFERENCES

4. Yokoe D. Multicenter evaluation of enhanced methods for sur-
gies. The questionnaire demonstrated that no participants had a history of TB and none had a risk factor for TB infection, including human immunodeficiency virus infection, immunodeficiency, use of high-dose steroids or immunosuppressive drugs, diabetes mellitus, or malignancy. Overall, 3 (20%) of 15 nurses were IGRA positive (Table 1). Menzies et al reported that the prevalence of LTBI among HCP was 63% in low- and middle-income countries and 24% in high-income countries. It is estimated that a prevalence of LTBI among Japanese HCP is approximately 10%. Two IGRA-positive nurses were derived from team Y, whereas all nurses in team X were IGRA negative. Two (50%) of the 4 nurses who were exposed to smear-positive TB for more than 9 hours were IGRA positive, whereas 1 (9.1%) of the 11 nurses who were exposed to smear-positive TB for less than 5 hours were IGRA positive, whereas 1 (9.1%) of the 11 nurses who were exposed to smear-positive TB for more than 9 hours were IGRA positive, whereas 1 (9.1%) of the 11 nurses who were exposed to smear-positive TB for less than 5 hours were IGRA negative. Two (50%) of the 4 nurses who were exposed to smear-positive TB for more than 9 hours were IGRA positive, whereas 1 (9.1%) of the 11 nurses who were exposed to smear-positive TB for less than 5 hours was IGRA positive. Although airline passengers who are seated for more than 8 hours in the same row or adjoining rows are more likely to be infected than other passengers, the optimal cutoff duration of exposure is determined in evaluating the likelihood of TB infection at close contact in the healthcare setting.

TST has very limited value for screening LTBI among HCP in Japan according to the possibility of false-positive results in people who have received BCG vaccination, while...