2006

Toll-like receptors and IFN-α: Partners in autoimmunity

Marco Colonna
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/1552

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
bone marrow-derived stem cells may be beneficial in ALI since pulmonary micro-vasculature would be the first capillary bed encountered and thus entrap stem cells that may help to regenerate pulmonary endothelium after injury. Although considerable work will be required, promotion of endothelial regeneration would be a novel approach to treat ALI.

Address correspondence to: Issie Komuro, Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. Phone: 81-43-226-2097; Fax: 81-43-226-2557; E-mail: komuro-tyk@umin.ac.jp.

3. Komuro-TK, Chiba 260-8670, Japan. Phone: 81-43-226-2097; Fax: 81-43-226-2557; E-mail: komuro-tyk@umin.ac.jp.

Virus-induced mechanisms of autoimmune hepatitis. In this issue of the *JCI*, Lang et al. (6) demonstrate that LCMV infection precipitates autoimmune hepatitis in a mouse model through activation of TLR3 in antigen-presenting cells, such as macrophages and DCs. Upon activation, cells secrete IFN-α/β and TNF-α, which trigger release of CXCL9 by hepatocytes, Kupffer cells, endothelial cells, and possibly other cells. CXCL9 attracts CXCR3-positive self-reactive CD8+ T cells that cause liver damage. As individual viruses can be detected in multiple antigen-presenting cells by different sensors, the figure also illustrates the potential involvement of other antigen-presenting cells, such as plasmacytoid DCs, and other viral sensors, such as TLR7, TLR9, and the RNA helicases melanoma differentiation-associated protein 5 (MDA-5) and retinoic acid-inducible gene I (RIG-I) in triggering autoimmunity. dsRNA, double-stranded RNA; ssRNA, single-stranded RNA.
active T cells during a viral infection. It is known that viruses elicit cytokine responses through several TLRs, including TLR3, TLR7, and TLR9 (7). TLRs trigger secretion of type I IFNs, i.e., IFN-α and IFN-β, as well as proinflammatory cytokines such as TNF-α. By testing these candidates, Lang et al. found that hepatitis was triggered when gp33 was administered along with a TLR3 agonist, polyinosinic–polycytidylic acid [poly(I:C)]. A TLR9 agonist, CpG, was only weakly effective. Despite its ability to trigger autoimmunity, poly(I:C) did not appear to directly activate self-reactive CD8+ T cells, as indicated by assessment of activation markers and effector functions. In fact, poly(I:C) predominantly acted on the liver, where it induced remarkably high secretion of CXC chemokine ligand 9 (CXCL9). The liver CXCL9 response to poly(I:C) required bone marrow–derived cells, as no CXCL9 induction was observed in irradiated TLR3 competent mice reconstituted with TLR3−/− bone marrow cells. Moreover, CXCL9 induction was secondary to poly(I:C)-induced secretion of IFN-α and TNF-α, as no CXCL9 induction was observed in IFN receptor α-deficient (IFNAR−/−) and TNF receptor 1–deficient (TNFR1−/−) mice.

CXCL9 is an effective chemoattractant for T cells expressing the receptor CXCR3, including antigen-primed CD8+ T cells (8). Indeed, when primed gp33–specific transgenic CD8+ T cells were transferred into Alb-1 mice, the majority migrated into the liver following administration of poly(I:C), resulting in notable liver damage (6). T cell migration was reduced in Alb-1/IFNAR−/− mice as well as following treatment with pertussis toxin, which blocks chemokine receptors. In summary, these results demonstrate that viral infection can precipitate autoimmunity by provoking TLR3-mediated secretion of IFN-α and TNF-α from macrophages, DCs, or other bone marrow–derived cells. In turn, IFN-α and TNF-α induce secretion of CXCL9 by hepatocytes and other cells, which attract self-reactive T cells into the liver, where they cause the damage associated with hepatitis (Figure 1).

IFN-α promotes autoimmunity: multiple mechanisms contribute to the general paradigm

The study by Lang et al. (6) indicates that virally-induced autoimmunity requires 2 steps: expansion of self-reactive T cells and TLR triggering in antigen-presenting cells. A role for TLR triggering in autoimmune diseases has recently been confirmed in other models. Poly(I:C) stimulation of TLR3 promotes diabetes in some mouse models (9, 10), although results appear to vary in the diabetes-prone BB rat and the NOD mouse model (11, 12). Similarly, TLR9 stimulation by DNA–anti-DNA immune complexes contributes to the activation of autoreactive B cells (13). That IFN-α promotes autoimmunity is consistent with the detection of an IFN-α signature in the transcriptome of blood leukocytes from SLE patients, along with their elevated IFN-α serum levels (14, 15). Moreover, therapeutic administration of IFN-α can induce SLE-like symptoms (16), and blockade of IFN-α/β signaling prevents autoimmunity in several animal models (9, 10, 17, 18).

Lang et al. (6) demonstrate that IFN-α acts by inducing CXCL9, which serves as a chemoattractant for autoimmune T cells into the liver. This is consistent with a previous study showing that CXCR3, the receptor for CXCL9, is required for a T cell–mediated attack of pancreatic β cells in a mouse model of diabetes (19). However, IFN-α also has other effects that can contribute to autoimmunity: it induces expression of MHC class I on tissues, thereby increasing susceptibility to CD8+ T cell attack (9) and also enhances CD8+ T cell cytolytic capacity. The IFN-α–induced upregulation of CD69 on CD8+ T cells observed by Lang et al. may promote their retention in lymph nodes (20), prolonging T cell interaction with antigen-presenting cells and enhancing T cell priming. IFN-α also facilitates T cell priming by promoting presentation of exogenous antigens through MHC class I (21).

Potential roles for cytosolic sensors of RNA and plasmacytoid DCs in autoimmunity

While the study by Lang et al. (6) establishes a clear role for TLR-mediated activation of macrophages, DCs, and IFN-α secretion, additional molecules and cells are likely to serve as viral triggers of autoimmunity. In addition to TLRs, cells rely on cytosolic double-stranded RNA–dependent protein kinase (PKR) and RNA helicases to detect RNA viruses and poly(I:C). PKR can elicit apoptosis of pancreatic β cells (22). RNA helicases, which include retinoic acid–inducible gene I (RIG-I) and melanoma differentiation–associated protein 5 (MDA-5), elicit secretion of IFN-α and proinflammatory cytokines, but each specifically detects only certain viruses (23, 24). Thus, in humans and relevant mouse models, distinct viruses may precipitate autoimmune diseases by triggering PKR or RNA helicases rather than TLRs (Figure 1). Consistent with this, a recent study has shown significant association of human type 1 diabetes with a polymorphism of MDA-5, suggesting that genetic predisposition to diabetes may result from an altered capacity to detect viruses and/or elicit IFN-α responses (25). While the study by Lang et al. (6) clearly suggests a major role for macrophages and DCs in IFN-α responses to viruses, other antigen-presenting cells may also contribute to IFN-α responses and autoimmunity (Figure 1). Indeed, plasmacytoid DCs, which specialize in the secretion of IFN-α in response to viruses, abundantly infiltrate skin lesions in SLE (26, 27).

Collectively, these studies underscore the importance of viruses in inciting self-reactivity. Because individual viruses are detected in antigen-presenting cells by unique sensors, a full understanding of the role of viruses in human autoimmune diseases awaits the identification of these novel pathways and the viruses responsible for triggering them.

Address correspondence to: Marco Colonna, Washington University, School of Medicine, Department of Pathology and Immunology, Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA. Phone: (314) 362-0367; Fax: (314) 362-4096; E-mail: mcolonna@pathology.wustl.edu.

Inborn errors of cholesterol synthesis cause human malformation syndromes, including Smith-Lemli-Opitz syndrome, lathosterolosis, desmosterolosis, X-linked dominant chondrodysplasia punctata type 2, and congenital hemidysplasia with ichthyosiform erythroderma and limb defects. Because adequate cholesterol is not transported across the placenta, low cholesterol and elevated sterol precursor levels are present during embryogenesis. It has been debated whether the malformations result from low cholesterol or the buildup of sterol precursors. In this issue of the JCI, Engelsing et al. provide evidence that sterol precursor accumulation plays a pivotal role in the genesis of facial malformations (see the related article beginning on page 2356).

Inborn errors of cholesterol synthesis

Smith-Lemli-Opitz syndrome (SLOS; see ref. 1) is due to mutation of the gene coding for 7-dehydrocholesterol reductase (DHCR7). DHCR7 reduces the Δ7 double bond in 7-dehydrocholesterol (7-DHC) to yield cholesterol in the final step of cholesterol synthesis. Impaired DHCR7 activity causes an accumulation of 7-DHC and cholesterol deficiency. Clinical manifestations of SLOS (Figure 1) are variable, and the phenotypic spectrum is broad. Severely affected infants have multiple congenital anomalies and devastating neurological impairment. In contrast, mild SLOS combines learning and autistic-like behavioral problems with minor physical anomalies. Typical craniofacial findings include microcephaly; proptosis; a short, upturned nose; and micrognathia. Cleft palate occurs in approximately half of the patients. Limb anomalies include short thumbs, postaxial polydactyly, and 2-3 toe syndactyly. SLOS is a relatively common genetic disorder. The clinical incidence has been estimated to be on the order of 1 in 20,000 to 1 in 60,000. However, the carrier frequency for SLOS mutations suggests an incidence on par with more well-known genetic disorders, such as phenylketonuria (1 in 14,000) and osteogenesis imperfecta (1 in 20,000).

SLOS was identified as a defect of cholesterol synthesis in 1993 (2). Subsequently, 4 additional human malformation syndromes have been shown to be due to impaired cholesterol synthesis (reviewed in ref. 3). These include the “SLOS-like” syndromes desmosterolosis and lathosterolosis, which are due to deficiencies of 3β-hydroxysterol-Δ7-reductase and lathosterol Δ7-desaturase, respectively. Two skeletal dysplasia syndromes with dermatologic manifestations, X-linked dominant chondrodysplasia punctata type 2 and congenital hemidysplasia with ichthyosiform erythroderma and limb defects, result from deficiency of 3β-hydroxysterol-Δ7, Δ7-sterol isomerase and NADPH sterol dehydrogenase, respectively. Hydrops-ectopic calcification-moth-eaten dysplasia and some cases of Antley-Bixler syndrome may include a minor impairment of cholesterol synthesis (3). However, the contribution, if any, of impaired cholesterol synthesis to these latter 2 syndromes is not clear.

Cholesterol deficiency and precursor toxicity

Understanding the pathophysiological processes that underlie the developmental defects in SLOS is complicated because cholesterol is important in multiple biological processes. Cholesterol is a structural lipid in cellular membranes and an obligatory biogenic precursor for steroid, oxysterol, and bile acid synthesis, and cholesterol modification of hedgehog morphogenetic proteins...