Regulation of Rab5 Function during Phagocytosis of Live Pseudomonas aeruginosa in Macrophages

Sushmita Mustafi
Florida International University

Nathalie Rivero
Florida International University

Joan C. Olson
West Virginia University

Philip D. Stahl
Washington University School of Medicine in St. Louis

M Alejandro Barbieri
Florida International University

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Mustafi, Sushmita; Rivero, Nathalie; Olson, Joan C.; Stahl, Philip D.; and Barbieri, M Alejandro, "Regulation of Rab5 Function during Phagocytosis of Live Pseudomonas aeruginosa in Macrophages." *Infection and Immunity*. 81,7. 2426-2436. (2013).
https://digitalcommons.wustl.edu/open_access_pubs/2553

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Regulation of Rab5 Function during Phagocytosis of Live Pseudomonas aeruginosa in Macrophages

Sushmita Mustafi, Nathalie Rivero, Joan C. Olson, Philip D. Stahl and M. Alejandro Barbieri

Updated information and services can be found at: http://iai.asm.org/content/81/7/2426

These include:
REFERENCES
This article cites 55 articles, 35 of which can be accessed free at: http://iai.asm.org/content/81/7/2426#ref-list-1
CONTENT ALERTS
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Regulation of Rab5 Function during Phagocytosis of Live Pseudomonas aeruginosa in Macrophages

Sushmita Mustafi,a Nathalie Rivero,a Joan C. Olson,b Philip D. Stahl,c M. Alejandro Barbieri,d

Department of Biological Sciences, Florida International University, Miami, Florida, USAa; Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USAb; Department of Cell Biology and Physiology, Washington University, School of Medicine, St. Louis, Missouri, USAc; Fairchild Tropical Botanic Garden, Coral Gables, Florida, USAd

Pseudomonas aeruginosa, a Gram-negative opportunistic human pathogen, is a frequent cause of severe hospital-acquired infections. Effectors produced by the type III secretion system disrupt mammalian cell membrane trafficking and signaling and are integral to the establishment of P. aeruginosa infection. One of these effectors, ExoS, ADP-ribosylates several host cell proteins, including Ras and Rab GTPases. In this study, we demonstrated that Rab5 plays a critical role during early stages of P. aeruginosa invasion of J774-Eclone macrophages. We showed that live, but not heat-inactivated, P. aeruginosa inhibited phagocytosis and that this occurred in conjunction with downregulation of Rab5 activity. Inactivation of Rab5 was dependent on ExoS ADP-ribosyltransferase activity, and in J744-Eclone cells, ExoS ADP-ribosyltransferase activity caused a more severe inhibition of phagocytosis than ExoT Rho GTPase activity. Furthermore, we found that expression of Rin1, a Rab5 guanine exchange factor, but not Rab5x and Rap6, partially reversed the inactivation of Rab5 during invasion of live P. aeruginosa. These studies provide evidence that live P. aeruginosa cells are able to influence their rate of phagocytosis in macrophages by directly regulating activation of Rab5.

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen capable of causing acute and chronic infections in immunocompromised individuals. P. aeruginosa infection is also a serious problem for patients hospitalized with AIDS, cancer, cystic fibrosis, and burns (1–4). The type III secretion (T3S) system allows Gram-negative bacteria to produce and translocate effector proteins into the cytoplasm of host cells. While the T3S system is conserved among distantly related pathogens, secreted effectors are pathogen specific (5). The secretion and translocation of T3S effectors into the cytosol of animal or plant cells initiates a biochemical cross talk between pathogen and host (6). Four T3S effectors have been identified in P. aeruginosa: ExoS, ExoT, ExoU, and ExoY. Each effector functions differently to help create an environment inside the human host that favors bacterial survival and propagation in tissue.

T3S effectors contribute to the ability of P. aeruginosa to invade tissue by breaking down physical barriers, damaging host cells, and confronting resistance to phagocytosis and host immune defenses (7, 8). Specifically, ExoS and ExoT are bifunctional effectors that have 76% homology, and both include Rho GTPase-activating (GAP) and ADP-ribosyltransferase (ADPr) activities (9). The GAP activities of ExoS and ExoT function similarly to inhibit P. aeruginosa internalization by inactivating Rho GTPases, Rho, Rac, and Cdc42, which regulate actin cytoskeleton structure (10–15). ExoS ADPr activity targets multiple specific substrates, including Ras family proteins, such as Ras, RalA, Rac1, and Rabs, to interrupt cell signaling (16–18). The substrate specificity of ExoT ADPr activity differs from that of ExoS ADPr activity and is limited to Crk-I (CT10 regulator of kinase I) and Crk-II adaptor proteins, which integrate protein tyrosine kinase signal transduction pathways (19–21). ExoU has been characterized as a necrotizing toxin with phospholipase activity (22) and has been found to block phagocyte-mediated clearance of infection (23). ExoY has adenylate cyclase activity and does not appear to play a major role in P. aeruginosa pathogenesis (24, 25).

Rab proteins, including Rab5, Rab7, Rab8, and Rab11, are known to be ADP-ribosylated by ExoS in vitro and in vivo (26). Rab proteins are a family of small GTP-binding proteins that regulate intracellular membrane trafficking of several pathogens, including Salmonella enterica serovar Typhimurium (27–29), Mycobacterium spp. (30), and Listeria monocytogenes (31). Rab5 also functions in the phagocytosis of IgG opsonized particles (32). In vitro studies have demonstrated that ExoS ADP-ribosylation of Rab5 diminishes the interaction between Rab5 and early endosome antigen 1 (EEA1) and fluid-phase uptake in intact cells Rab5, and its guanine exchange factors (GEFs), which include Rabex-5, Rin1, and Rap6 (also known as GAPex5) (33–36), play a critical role in intracellular membrane trafficking (37), including phagocytosis of apoptotic cells (38). Although Rab5 was found to be present on phagosomes following phagocytosis of several bacterial pathogens and latex beads, the functional role for Rab5 in phagocytosis of P. aeruginosa is not fully understood.

In this study, we demonstrate that Rab5 activity was regulated during early stages of P. aeruginosa phagocytosis in J774-Eclone macrophages. Expression of wild-type Rab5 (Rab5:WT) or a Rab5:Q79L, a GTP hydrolysis-defective mutant, increased invasion of heat-inactivated P. aeruginosa, while expression of Rab5: S34N, a GTP-binding-defective mutant, decreased phagocytosis. Rab5 was activated during invasion of heat-inactivated P. aeruginosa but was inactivated during invasion of live P. aeruginosa. Expression of constitutively active Rab5:Q79L overcame the sup-
pressive effects of live *P. aeruginosa* on phagocytosis. Inactivation of Rab5 by live *P. aeruginosa* was dependent on ExoS ADPr activity, and in J774-Eclone cells, ExoS ADPr activity caused a more severe inhibition of phagocytosis than ExoS GAP activity. Finally, we found that expression of Rin1, a Rab5 GEF, interfered with the ability of live *P. aeruginosa* to inactivate Rab5. The ability of live *P. aeruginosa* to regulate phagocytosis by altering Rab5 activation provides further insight into how *P. aeruginosa* is able to manipulate the host during infection.

MATERIALS AND METHODS

Materials. All chemicals and reagents were purchased from Sigma-ALdrich (St. Louis, MO), unless otherwise indicated. Primary and secondary antibodies used in immunoblotting were purchased from Cell Signaling Technology Inc. (Danvers, MA). Culture supplies were purchased from Invitrogen Life Technologies (Carlsbad, CA).

Cell culture. J774-Eclone cells (39) were maintained under a 5% CO2 atmosphere in Dulbecco’s minimum essential medium (DMEM), supplemented with 10% heat-inactivated fetal calf serum (FCS), 2 mM l-glutamine, 100 U/ml penicillin, and 100 μg/ml of streptomycin. J774-Eclone cells were used for all *P. aeruginosa* phagocytosis studies. The Platinum-E retroviral packaging cell line (Plat-E cells) was purchased from Cell Biolabs, Inc. (San Diego, CA) and maintained in DMEM, 10% FCS, 1 μg/ml puromycin, 100 U/ml penicillin, and 100 mg/ml of streptomycin.

Bacterial strains. *P. aeruginosa* strains PAO1 (a derivative of the original Australian isolate PAO), PA103 (which expresses ExoT and ExoU) and is naturally devoid of ExoS and ExoY), and isogenic mutants of strain PA103, including PA103ΔExoU (PA103ΔU) (which expresses ExoT) and PA103 exoU exoT::Tc (PA103ΔTΔU) (a T3S effector null mutant), were provided by Dara Frank (Medical College of Wisconsin, Milwaukee, WI). *P. aeruginosa* PA103ΔΔRAT strains expressing (i) the pUCP vector (−), (ii) wild-type ExoS [ExoS(WT)], (iii) ExoS with active RhoGAP [ExoS(RhoGAP)] but lacking ADPr activity (ExoS(ADPr−)), (iv) ExoS with active ADPr activity [ExoS(ADPr+) but lacking RhoGAP activity due to a R146A mutation, or (v) ExoS that lacks catalytic activity [ExoS(RhoGAP−/ADPr−)] due to E379A/E381A mutations were previously described (40). Bacteria were grown at 37°C in LB in broth with appropriate antibiotics. Prior to assay of phagocytosis, bacteria were grown to late log phase, diluted to a concentration of 10⁷ CFU/ml, and added to cells at the indicated multiplicities of infection (MOIs).

Construction of recombinant pMX-puro retroviruses and cell lines. cDNAs of Rab4, Rab5, Rab7, Rin1, Rabex5, and Rap6 were subcloned into the pMX-puro vector as described previously (41). cDNAs of ExoS and Exo8 deletion mutants containing RhoGAP (1 to 232 amino acids) (ExoS: RhoGAP) or ExoS ADPr (252 to 453 amino acids) (ExoS:ADPr) domains were subcloned into the pMX-puro vector at BamHI and NotI sites, respectively. The cDNAs were used in the Fugene6-mediated transfection of 90% confluent Plate-E cell monolayers. Cells were maintained at 37°C, and the medium containing released virus was harvested at 48 h after transfection. Viral stocks were aliquoted and frozen at −80°C until use. Cell lines were generated by infecting J774-Eclone cells with retrovirus encoding green fluorescent protein (GFP), Rab4, Rab5, Rab7, Rin1, Rabex5, Rap6, and Exo8 domains, essentially as previously described (41).

Phagocytosis assay. *P. aeruginosa* strains were cultured to late log phase and washed with phosphate-buffered saline (PBS) (pH 7.3) and then with NaHCO3 (pH 9.3) three times each. After washing, Alexa Fluor 594 (Invitrogen, Carlsbad, CA) was used to label live or heat-inactivated bacteria for 2 h at room temperature while protected from light. J774-Eclone cells (10⁵ cells/ml) were plated on coverslips in 6-well plates and incubated overnight. Cells were washed once with PBS and then twice with Hanks balanced salt solution (HBSS)−2% bovine serum albumin (BSA). Bacteria were added at a ratio of 200:1 and incubated for 30 min at 4°C. To initiate bacterial internalization, plates were placed in a 37°C water bath for 5 to 60 min. After this time, cells were placed on ice, washed three times with PBS, and then fixed for 20 min at room temperature using 3.7% paraformaldehyde. After fixation, cells were washed three times with PBS, incubated with 1% Triton X-100 at room temperature for 15 min, and incubated with 4',6-diamidino-2-phenylindole (Roche Applied Science, Indianapolis, IN) to stain the nucleus. Coverslips were removed from the wells, washed, and mounted with Mowiol fluorescence mounting medium. The number of bacteria per cell was enumerated at a magnification of ×100 using a phase-contrast inverted fluorescence microscope. Two hundred cells were counted per slide, and each experiment was repeated three times. The phagocytic index refers to the number of bacteria inside each cell. An antibiotic protection assay, described previously (42), was used to analyze bacterial survival within macrophages. For this assay, following the indicated time of phagocytosis, cells were washed three times with PBS, and extracellular bacteria were killed by incubating cells with growth medium containing amikacin (400 μg/ml). After washing, cells were incubated at 37°C for an additional 30 and 60 min to examine bacterial survival within macrophages. Finally, cells were washed with PBS and lysed with 0.5% Triton X-100, lysates were plated on LB agar and incubated overnight, and bacterial colonies were enumerated.

Isolation of purified phagosomes. Phagosome containing live or dead *P. aeruginosa* were isolated as described by Mukherjee et al. (27). Briefly, J774-Eclone cells were seeded at 1.0×10⁶ cells/ml and live or heat-inactivated *P. aeruginosa* was added to cells at a concentration of 2×10⁸ bacteria/ml, followed by synchronization of cells and bacteria at 4°C for 1 h in HBSS buffer (27). Cells were then treated with prewarmed HBSS medium and incubated for 5 min at 37°C. Bacterial uptake was stopped by the addition of ice-cold HBSS medium. Unbound bacteria were removed by washing cells three times, with centrifugation at low speed (300×g for 5 min) between washes. Washed cells were resuspended at a concentration of 2×10⁷ cells/ml in homogenization buffer (250 mM sucrose, 0.5 mM EGTA, 20 mM HEPES-KOH, pH 7.2) and homogenized in a ball-bearing homogenizer at 4°C. Homogenates were centrifuged at a low speed (400×g for 5 min) at 4°C to remove nuclei and unbroken cells. To obtain the phagosomal fraction, postnuclear supernatants were diluted with homogenization buffer (1:3), followed by centrifugation at 12,000×g for 15 s at 4°C (27). Phagosomal fractions were resuspended in 100 ml of homogenization buffer containing protease inhibitors, loaded on a 1-ml 12% sucrose cushion, and centrifuged at 800×g for 45 min at 4°C, and purified phagosomes were recovered from the bottom of the tube. Bacterial viability in the phagosomes was determined following selective lysis of the phagosomal membrane with solubilization buffer (50 mM Tris-HCl, 150 mM NaCl, and 0.5% NP-40) and plating lysates on LB agar plates. Bacterial colonies formed after overnight incubation were quantitated as previously described (43).

Cell lysis and immunoblotting. For immunoblot analysis, J774-Eclone cells were washed twice with PBS and then lysed with radiouimmunoprecipitation assay (RIPA) cell lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40) in the presence of protease and phosphatase inhibitors. Lysates were collected with cell scrapers and cleared by centrifugation. Prior to SDS-PAGE, cell lysates were resuspended in SDS sample buffer (60 mM Tris-HCl, 1% [wt/vol] SDS, 10% glycerol, 0.05% [wt/vol] bromophenol blue, pH 6.8, with 2% β-mercaptoethanol). Samples were subjected to SDS-PAGE and transferred to nitrocellulose membranes for immunoblotting. Nitrocellulose membranes were incubated with blocking solution (Tris-buffered saline [TBS] containing 0.1% Tween 20 and 5% BSA) and were probed with the indicated antibodies.

RNAi sequences and transfection. RNA interference (RNAi) sequences directed against mouse Rin1 (5’-UUAUACAUAUGGGCUUCAACA CCAUAGC-3’), mouse Rabex5 (5’-UUAUACAUGGCGCUUCAUGAU GUCG-3’), mouse Rab5 (5’-AACATGTTAGCAGGACAGA-3’), mouse Rab5B (5’-GATCATGTTATGAGA-3’), mouse Rab5C (5’-AAGGCA GCATGTTTGCTATG-3’) were designed and synthesized by Ambion (Austin, TX). A scrambled RNAi sequence was designed as a control (5’-
S34N (a constitutively inactive GTP-binding-defective mutant) or Rab5:Q79L (QL) (a constitutively active GTP hydrolysis-defective mutant), or GFP-Rab5:WT, Rab5:Q79L, internalization of live P. aeruginosa was also inhibited by silencing all Rab5 isoforms (Fig. 1D, inset). Depletion of all, but not individual, Rab5 isoforms (data not shown) resulted in an 80% ± 6% reduction of internalization of heat-inactivated P. aeruginosa compared with that for control cells that were not RNAi treated or transfected with a scramble RNAi sequence (Fig. 1D).

Collectively, these results show that Rab5 regulates early events in the phagocytosis of heat-inactivated P. aeruginosa and that effects of Rab5 on P. aeruginosa internalization differ kinetically from those of Rab7. In addition, the finding that constitutively active Rab5:Q79L increased the rate of phagocytosis while Rab5:S34N decreased the rate of phagocytosis provides evidence that Rab5 activation plays a role in the uptake of heat-inactivated P. aeruginosa in J774-Eclone macrophages.

Live P. aeruginosa blocks Rab5 activation in macrophages. Evidence that Rab5 plays a role in phagocytosis of heat-inactivated P. aeruginosa led us to investigate the role of Rab5 during phagocytosis of live P. aeruginosa. Unexpectedly, internalization of live strain PAO1 into J774-Eclone macrophages was found to be 75% ± 4% lower than internalization of heat-inactivated or dead P. aeruginosa after 5, 15, or 30 min of infection.

We then examined whether enhanced expression of Rab5 proteins could overcome the suppressive effects of live P. aeruginosa on phagocytosis. For these studies, J774-Eclone cells expressing a GFP control or Rab5:WT, Rab5:Q79L, or Rab5:S34N were incubated with live or heat-inactivated P. aeruginosa and phagocytosis was analyzed after 15 min. A decrease in the internalization of live P. aeruginosa was observed in cells expressing GFP alone, Rab5:WT, or Rab5:S34N compared to internalization of heat-inactivated P. aeruginosa (Fig. 2B). However, in the cells expressing Rab5:Q79L, internalization of live P. aeruginosa closely approximated that of the heat-inactivated P. aeruginosa. Phagocytosis of live P. aeruginosa was also inhibited by silencing all Rab5 isoforms (Fig. 2C) but not by silencing individual Rab5 isoforms (not shown). Collectively, these results demonstrate that Rab5 exerts a dominant role in the uptake of heat-inactivated P. aeruginosa.

RESULTS

Rab5 is required for phagocytosis of heat-inactivated P. aeruginosa by macrophages. Previous studies have found that Rab GTPases, including Rab5, are manipulated by bacteria during phagocytosis (44). To investigate the involvement of Rab GTPases in P. aeruginosa phagocytosis, the pMX-puro retroviral expression system was used to express Rab proteins in J774-Eclone macrophages. Initially, to examine if the retroviral expression system altered phagocytosis of P. aeruginosa, control (nontransfected) or GFP-transfected J774-Eclone cells were incubated with heat-inactivated strain PAO1 P. aeruginosa at a ratio of 200:1, and the phagocytic index was monitored (as described in Materials and Methods) over a 1-h period. Figure 1A shows that the rate of phagocytosis of heat-inactivated P. aeruginosa was not altered in GFP-expressing cells compared with nontransfected control cells. Similarly, the phagocytic index of heat-inactivated P. aeruginosa was not altered relative to increasing ratio of bacteria to cells in GFP-expressing cells compared with nontransfected control cells (Fig. 1A, inset). We concluded from these studies that phagocytosis of heat-inactivated P. aeruginosa by J774-Eclone macrophages was time and bacterial concentration dependent and was not altered by the pMX-puro retroviral expression system.

We next examined the effect of increased expression of Rab5 proteins on phagocytosis of heat-inactivated P. aeruginosa by J774-Eclone macrophages. Cells expressing GFP alone, GFP–wild-type Rab5 (Rab5:WT), GFP-Rab5:Q79L (QL) (a constitutively active GTP hydrolysis-defective mutant), or GFP-Rab5:S34N (a constitutively inactive GTP-binding-defective mutant) were incubated with heat-inactivated P. aeruginosa, and the phagocytic index was monitored over a 60-min period. Expression of Rab5:WT and the Rab5:Q79L mutant increased the rate of phagocytosis of heat-inactivated P. aeruginosa in relation to internalization of GFP-expressing control cells at 60 min (Fig. 1B). In comparison, expression of the Rab5:S34N mutant decreased the rate of phagocytosis of heat-inactivated P. aeruginosa compared to that of GFP-expressing cells (Fig. 1B). Enhanced expression of the indicated Rab5 construct was confirmed by immunoblot analysis in lysates of J774-Eclone cells, using tubulin as a reference protein (Fig. 1B, inset).

To examine the roles of other Rab GTPases in P. aeruginosa phagocytosis, cells expressing GFP alone, Rab7:WT, the Rab7:Q67L GTP hydrolysis-defective mutant, or the Rab7:S22N GTP-binding-defective mutant were incubated with heat-inactivated P. aeruginosa and monitored for phagocytosis over a 60-min period. The phagocytic index of J774-Eclone cells expressing Rab7:WT and Rab7:Q67L was greater than that of GFP-expressing cells after 30 min, while phagocytosis in cells expressing Rab7:S22N was halted beyond 15 min (Fig. 1C). Enhanced expression of the respective Rab7 construct in transfected J774-Eclone cells was confirmed by immunoblot analysis (Fig. 1C, inset). Unlike the case for Rab5 or Rab7, phagocytosis of heat-inactivated P. aeruginosa was not altered by transfection of Rab4 constructs. In analyses of Rab4, the relative phagocytic indices of J774-Eclone cells after 30 min were as follows: GFP, 100% ± 7%; Rab4:WT, 103% ± 6%; Rab4:Q67L, 98% ± 5%; and Rab4:S22N, 95% ± 5%. We also examined the effect of depletion of Rab5 proteins by RNA interference (RNAi) on the uptake of heat-inactivated P. aeruginosa. Based on immunoblot analysis, greater than 95% of Rab5 protein was depleted by RNAi duplexes that targeted all three Rab5 isoforms (Fig. 1D). Depletion of all, but not individual, Rab5 isoforms (data not shown) resulted in an 80% ± 6% reduction of internalization of heat-inactivated P. aeruginosa compared with that for control cells that were not RNAi treated or transfected with a scramble RNAi sequence (Fig. 1D).

Digital images of the Western blots from cell lines were captured and blots after images were scanned at a grayscale amplification of 600 dpi. The pulldown mixtures were subjected to SDS-PAGE and analyzed by immunoblotting using Rab5 antibodies. Immunoblot analysis confirmed that expression of Rab5 constructs decreased the rate of phagocytosis of heat-inactivated P. aeruginosa compared with that of GFP-expressing cells (Fig. 1B). Enhanced expression of the indicated Rab5 construct was confirmed by immunoblot analysis in lysates of J774-Eclone cells, using tubulin as a reference protein (Fig. 1B, inset).

In vitro pulldown assays. Cells were lysed using a buffer containing 20 mM HEPES (pH 7.5), 100 mM NaCl, 1 mM dithiothreitol (DTT), 5 mM MgCl2, 5% glycerol, and 1% Triton X-100, supplemented with 1 mM phenylmethylsulfonyl fluoride (PMSF). Lysates were incubated with 100 µl glutathione beads containing 10 µg of glutathione S-transferase (GST)–EEA1, followed by rocking for 1 h at 4°C. After incubation, beads were washed three times with PBS. The pulldown mixtures were subjected to SDS-PAGE and analyzed by immunoblotting using Rab5 antibodies.

Image quantification. NIH Image J64 was used to quantify Western blots after images were scanned at a grayscale amplification of 600 dpi. The pulldown mixtures were subjected to SDS-PAGE and analyzed by immunoblotting using Rab5 antibodies.

Statistical analysis. All samples in this study were analyzed in duplicate, and each experiment was repeated three times. Values represent the mean ± standard error of the mean (SEM) from three independent experiments. To compare two groups, Student’s t test was used. A P value of < 0.05 was considered statistically significant.
different effects on the internalization of live or heat-inactivated P. aeruginosa and that these differences are nullified by the expression of constitutively activated Rab5. The finding that interference of expression of all, but not individual, Rab5 isoforms inhibits phagocytosis of live P. aeruginosa also highlights the cooperative and redundant regulation of P. aeruginosa phagocytosis by the three Rab5 isoforms.

Since the cycling of Rab5 between active and inactive states is integral to P. aeruginosa internalization, the question remains whether Rab5 activation is regulated by live P. aeruginosa as a defense mechanism against phagocytosis. To explore the ability of live P. aeruginosa to regulate Rab5 function, we first characterized the phagosomes carrying live or heat-inactivated P. aeruginosa during early phagocytosis. For these studies, cells were incubated with live or heat-inactivated strain PAO1 for 5 min at 37°C, and phagosomes containing P. aeruginosa were isolated and analyzed. Figure 3A shows that phagosomes containing live or heat-inactivated P. aeruginosa both recruited Rab5 protein on the phagosomal membrane but that Rab5 accumulation was significantly reduced in phagosomes containing live P. aeruginosa. Notably, Rab7 was not detected on phagosomes isolated after 5 min of internalization (Fig. 3A). A representative image showing relative levels of Rab5 and Rab7 in phagosomes, in relation to tubulin and actin reference proteins, is shown in Fig. 3A (inset).

We then determined whether reduced accumulation of Rab5 on phagosomes containing live P. aeruginosa correlated with inhibition of Rab5 activation. In these studies, J774-Eclone macrophages were incubated with live or heat-inactivated P. aeruginosa for 5 min at 37°C, and active Rab5 in total cell lysates was assayed using a GST-EEA1 glutathione bead pulldown assay, detecting active GTP-Rab5 bound to EEA1 by immunoblot analysis using an anti-Rab5 antibody. As shown in Fig. 3B, incubation with live but not with heat-inactivated P. aeruginosa significantly inhibited Rab5 binding to GST-EEA1. A representative immunoblot (Fig. 3B, inset) shows lack of binding of lysates from live, but not heat-inactivated P. aeruginosa.
inactivated, P. aeruginosa treated cells to GST-EEA1, in relation to total Rab5 and GST proteins in lysates.

To examine the influence of live P. aeruginosa on activation of Rab5 during phagocytosis, J774-Eclone cells expressing Rab5:WT or the Rab5:S34N constitutive mutant were incubated with live or heat-inactivated P. aeruginosa for 5 min at 37°C, and total lysates were analyzed for active GTP-Rab5 using the GST-EEA1 pull-down assay. As shown in Fig. 3C, incubation of cells with live P. aeruginosa, but not with heat-inactivated P. aeruginosa, inhibited Rab5 activation, and this inhibition was nullified by expression of constitutively active Rab5:S34N. These results are shown in the representative immunoblot (Fig. 3C, inset). Together, these studies demonstrate that live P. aeruginosa regulates both recruitment and activation of Rab5 to early phagosomes.

Exotoxin S plays a critical role in Rab5 activation during phagocytosis of P. aeruginosa. Our results show that phagocytosis of live P. aeruginosa by macrophages downregulates Rab5 activation. Previous studies found that ExoS can ADP-ribosylate Rab5 (18, 26), and in vitro studies confirmed that ADP-ribosylation of Rab5 by ExoS interfered with its interaction with EEA1 (45). These findings indicate an ability of ExoS to interfere with endosomal tethering during P. aeruginosa phagocytosis. To determine the relationship between ExoS expression and Rab5 activation during phagocytosis, P. aeruginosa strains lacking ExoS were compared with strain PAO1, which expresses ExoT, ExoU, and ExoY, for their ability to interfere with Rab5 activation during phagocytosis. P. aeruginosa strains that were examined included (i) PA103, which lacks ExoU but expresses ExoT and ExoU, (ii) PA103ΔU, which lacks ExoS, ExoT, and ExoU, and (iii) PA103ΔTΔU, which lacks all known T3S effectors.

When internalization of live or heat-inactivated P. aeruginosa was examined following incubation of J774-Eclone cells with these strains for 15 min, significant differences in the internalization of live strains were observed, whereas the phagocytic response was uniform for all the heat-inactivated strains (Fig. 4A). Live PAO1, which produces ExoS, caused the greatest inhibition of phagocytic uptake (75% ± 4%) relative to heat-inactivated strain PAO1. In comparison, live strain PA103, expressing ExoT and ExoU, inhibited phagocytosis by 40% ± 6%, which closely approximated the 34% ± 6% inhibition of phagocytosis caused by strain PA103ΔU, which expresses only ExoT. Live strain PA103ΔTΔU, lacking all four T3S effectors, caused a 15% ± 3% inhibition of phagocytosis. These results provide evidence that ExoS and ExoT, produced by strain PAO1, have a more pronounced role than ExoT alone, produced by strain PA103 in inhibiting phagocytosis in J774-Eclone macrophages.

When the fate of bacteria internalized within J774-Eclone macrophages was examined, strain PA103 was found to be more sensitive to macrophage-mediated killing than strain PAO1. Survival rates of 53% ± 6% and 17% ± 3% were detected for internalized strain PA103 after 30 and 60 min, respectively, which compared with 75% ± 5% and 58% ± 5% survival rates for internalized strain PAO1 after 30 min and 60 min, respectively, relative to the total internalized bacteria after 15 min of phagocytosis (control, 100% ± 5%).

We then examined how the uptake and survival of PA103 and PAO1 strains within macrophages related to the ability of these strains to alter Rab5 activity. For these studies, cells were incubated with live or dead P. aeruginosa strains, and cell lysates were examined for active GTP-bound Rab5 in the GST-EEA1 pulldown assay, described above. As shown in Fig. 4B, incubation of cells with strain PAO1, but not with strain PA103, inhibited Rab5 activation, and as expected, internalization of heat-inactivated P. aeruginosa did not alter Rab5 activation. Interestingly, strains PA103 and PA103ΔU, which express ExoT, did not inhibit Rab5 activation (Fig. 4B), even though these strains inhibited P. aeruginosa internalization (Fig. 4A). A representative immunoblot (Fig. 4B, inset) shows lack of binding of J774-Eclone lysates obtained following exposure to live PAO1 to GST-EEA1, while all other lysates bound GST-EEA1. These results indicate that inhibition of J774-Eclone phagocytosis by ExoS-producing strain PAO1 occurs in conjunction with inhibition of Rab5 activation, while inhibi-
tion of phagocytosis by ExoT-producing PA103 strains occurs independently of alterations in Rab5 activation.

Several approaches were then used to further investigate the role of ExoS and Rab5 activation in the invasion of live *P. aeruginosa* in J774-Eclone cells. First, to assess the role of ExoS in *P. aeruginosa* internalization, we examined the ability of PA103ΔΔT strains lacking ExoS [ExoS(−)], expressing ExoS [ExoS(WT)], or expressing ExoS with mutations that inactivate its GAP [ExoS(ADPr)] mutant compared to PA103ΔΔT expressing an ExoS(ADPr/RhoG)− mutant (Fig. 5B). Notably, PA103ΔΔT expressing ExoS(ADPr−/RhoG−) mutant did not inhibit formation of the GTP-bound form of Rab5 (Fig. 5B), indicating that the ADPr domain of ExoS is essential to inactivation of Rab5 during phagocytosis of live *P. aeruginosa*.

We then examined the roles of ExoS and ExoS domains in Rab5 activation upon coexpression of both Rab5 and ExoS constructs in J774-Eclone macrophages. As shown in Fig. 5C, when GTP-bound Rab5 was assayed in J774-Eclone cells expressing Rab5:WT or the Rab5:Q79L mutant did not inhibit formation of the GTP-bound form of Rab5 (Fig. 5B), indicating that the ADPr domain of ExoS is essential to inactivation of Rab5 during phagocytosis. Activation of Rab5 was assayed in J774-Eclone cells expressing Rab5:WT and the ADPr and its GAP and ADPr [ExoS(ADPr−/RhoG−)] activities to be phagocytosed by J774-Eclone macrophages. For these studies, cells were incubated with each of the live *P. aeruginosa* strains for 5 min prior to washing and determination of the phagocytic index. As shown in Fig. 5A, greater than 80% inhibition (P < 0.05) was observed in the uptake of live PA103ΔΔT expressing either ExoS(WT) or the ExoS(ADPr−) mutant compared to PA103ΔΔT either lacking ExoS or expressing an ExoS(ADPr−/RhoG−) mutant. A significant P < 0.05 but less pronounced inhibition of phagocytosis (~40%) was caused by live PA103ΔΔT expressing an ExoS(RhoG−) mutant. These results provide evidence that ExoS ADPr activity plays a more pronounced role in the antiphagocytic activity of live PA103ΔΔT expressing ExoS than ExoS RhoG activity.

We then examined how the antiphagocytic effects of these strains related to the formation of GTP-bound Rab5 during the invasion of live *P. aeruginosa*. A significant decrease (>90% inhibition) in the formation of the GTP-bound form of Rab5 was caused by live PA103ΔΔT expressing ExoS(WT) or an ExoS(ADPr−) mutant compared to PA103ΔΔT expressing an ExoS(ADPr−/RhoG−) mutant (Fig. 5B). Notably, PA103ΔΔT expressing an ExoS(RhoG−) mutant did not inhibit formation of the GTP-bound form of Rab5 (Fig. 5B), indicating that the ADPr domain of ExoS is essential to inactivation of Rab5 during phagocytosis.

Selective role of Rab5 GEFs during internalization of *P. aeruginosa*. Rab5 cycling between its GTP-active and GDP-inac-
RNAi sequences specific for Rin1, Rabex5, or Rap6. Interference of the internalization, we suppressed expression of Rab5-GEFs using three independent experiments. Asterisks represent statistically significant differences compared to GFP control cells. Interference of expression of all three Rab5 GEFs, using a triple knockdown, caused >80% inhibition of internalization of live or heat-inactivated *P. aeruginosa* compared to that for GFP control cells. Interference of expression of all three Rab5 GEFs, using a triple knockdown, caused >80% inhibition of internalization of live or heat-inactivated *P. aeruginosa* compared to that for GFP control cells. Interference of expression of all three Rab5 GEFs, using a triple knockdown, caused >80% inhibition of internalization of live or heat-inactivated *P. aeruginosa* compared to that for GFP control cells. Interference of expression of all three Rab5 GEFs, using a triple knockdown, caused >80% inhibition of internalization of live or heat-inactivated *P. aeruginosa* compared to that for GFP control cells. Interference of expression of all three Rab5 GEFs, using a triple knockdown, caused >80% inhibition of internalization of live or heat-inactivated *P. aeruginosa* compared to that for GFP control cells. Interference of expression of all three Rab5 GEFs, using a triple knockdown, caused >80% inhibition of internalization of live or heat-inactivated *P. aeruginosa* compared to that for GFP control cells. Interference of expression of all three Rab5 GEFs, using a triple knockdown, caused >80% inhibition of internalization of live or heat-inactivated *P. aeruginosa* compared to that for GFP control cells.

Rin1 expression partially reverses the negative effect of *P. aeruginosa on Rab5 activation in macrophages.** Establishing a role of Rin1 in the internalization of live or dead *P. aeruginosa* led us to hypothesize that activation of Rab5 by Rin1 may, at least in part, be responsible for enhancing the internalization of live *P. aeruginosa*. To determine whether Rin1 activity increases internalization of live *P. aeruginosa*, J774-Eclone cells expressing GFP, Rin1, Rabex5, or Rap6 were incubated in the presence of live or heat-inactivated strain PAO1 *P. aeruginosa* for 5 min, and then the formation of the GTP-bound form of Rab5 was examined using a GST-EEA1 pulldown assay. In Fig. 7, we show that Rin1 expression increased the amount of active GTP-bound Rab5 formed during the internalization of live or heat-inactivated *P. aeruginosa*. This is consistent with our observation that the expression of Rin1 increased the internalization of live or heat-inactivated *P. aeruginosa* (Fig. 6A).

Interestingly, when Rabex5- or Rap6-expressing J774-Eclone cells were incubated with live *P. aeruginosa*, we observed a small amount of GTP-bound Rab5 in the GST-EEA1 pulldown assay for only Rap6-expressing J774-Eclone cells, but the increase in the Rab5 GTP-bound form was lower than that observed in Rin1-expressing cells (Fig. 7). Taken together, these results indicate that Rin1 plays a selective and critical role in the activation of Rab5 during live *P. aeruginosa* invasion, which is consistent with the observation that live *P. aeruginosa* inactivates Rab5, and this inhibitory effect can be partially reversed by the expression of Rin1.

DISCUSSION

The type III secretion system of *P. aeruginosa* is known to modulate host cell endocytosis (15, 45). In this study, we demonstrated that Rab5 plays a critical role during early steps in the phagocytosis of *P. aeruginosa* in J774-Eclone macrophages. We found that invasion of live, but not heat-inactivated, *P. aeruginosa* downregulates Rab5 activation and that inactivation of Rab5 during invasion requires expression of ExoS. In support of ExoS being a key effector in Rab5 activation, we confirmed that ExoS ADPr activity, but not ExoS RhoGAP, inhibits Rab5 activation. In addition, we found that overexpression of Rin1 partially reverses inactivation of Rab5 by ExoS ADPr activity during invasion of live *P. aeruginosa*. These observations led us to develop a model that portrays ExoS ADPr activity and its interference with Rab5 activation as integral to the diminished internalization of live, compared to heat-inactivated, *P. aeruginosa* in J774-Eclone macrophages.

While live *P. aeruginosa* was found to inactive Rab5 during *P. aeruginosa* phagocytosis, Rab5 also influenced phagocytosis of heat-inactivated *P. aeruginosa*. Both Rab5 WT and constitutively active Rab5 Q79L upregulated the phagocytic index of heat-inactivated *P. aeruginosa* by 2- to 4-fold, whereas expression of consti-
tutively inactive Rab5:S34N reduced the phagocytic index by half, compared to that for control cells. Unlike Rab5, Rab4 and Rab7 did not alter \textit{P. aeruginosa} internalization during early stages, up to 15 min, of phagocytosis, but the Rab7:S22N mutant was able to diminish \textit{P. aeruginosa} internalization after 30 min. These observations indicate that Rab5 plays a key role during early stages, while Rab7 plays a role in later stages, of phagocytosis of heat-killed \textit{P. aeruginosa}.

Rab5 is a substrate of ExoS ADPr activity and has been found to interfere with Rab5 function in vitro (45). \textit{P. aeruginosa} strains lacking one or more of the four T3S effectors were used to examine the role of ExoS in phagocytosis in \textit{J774-Eclone} macrophages. When the phagocytic indices of strains PA103, PA103Δ\textit{\textDelta}U, PA103Δ\textit{T\textDelta}U, and PAO1 strains were determined, we found that live strain PA103, lacking both ExoS and ExoY (46), was engulfed at a 3-fold-higher level than live strain PAO1, which expresses ExoS, ExoT, and ExoY. Studies performed in parallel found PAO1 survival within macrophages to be enhanced (58\% ± 5\% survival) in comparison to that of strain PA103 (17\% ± 3\% survival), indicating increased susceptibility of strain PA103 to macrophage-mediated killing. Notably, uptake of live PA103 was about 40\% ± 6\% less than that of heat-inactivated PA103, which is attributed to ExoT RhoGAP activity of strain PA103 (47).

In examining the effect of \textit{P. aeruginosa} on the activity of Rab5 proteins, we demonstrated that live \textit{P. aeruginosa}, but not the heat-inactivated \textit{P. aeruginosa}, is responsible for diminishing levels of active GTP-bound Rab5. The inhibitory effect of live \textit{P. aeruginosa} on Rab5 activation was overcome by expression of the constitutively active Rab5\textit{Q79L}. Interestingly, we observed that live PAO1, but not live PA103, PA103Δ\textit{\textDelta}U, or PA103Δ\textit{T\textDelta}U, inhibited Rab5 activation (Fig. 4A). Because strain PA103 lacks ExoS and ExoY and because ExOY seems unlikely to affect Rab5 activation (51), we speculated that ExoS plays a role in the modulation of Rab5 activation during the internalization of live \textit{P. aeruginosa}.

![FIG 5](http://iai.asm.org/)

FIG 5 Effect of ExoS GAP or ADPr activity on \textit{P. aeruginosa} invasion and Rab5 activation in macrophages. (A) Live PA103Δ\textit{T\textDelta}U expressing a vector control (–), ExoS(WT), an ExoS(R146A) (ADPr+) mutant, an ExoS(E379A/E387A) (RhoG+) mutant, or an ExoS(R146A/E379A/E387A) (ADPr+/RhoG+) mutant were incubated with \textit{J774-Eclone} macrophages at a ratio of 200:1 at 37°C for 5 min. After incubation, cells were washed and the phagocytic index was determined. (B) Live PA103 strains described for panel A were incubated with \textit{J774-Eclone} macrophages for 30 min, and Rab5 activation was assayed as described above. Inset, representative immunoblot of active GTP-Rab5 and total Rab5 or GST-EEA1 in the lysates following incubation of cells with the indicated PA103 strains. (C) Cells expressing Rab5/WT or Rab5\textit{Q79L} were transfected with 6His-ExoS(WT) (ExoS), and lysates were assayed for active Rab5 as described above. Inset, representative immunoblot of samples probed with anti-Rab5 or anti-His tag antibodies. (D) Cells expressing Rab5/WT were transiently transfected with 6His-ExoS(WT), 6His-ExoS(RhoG), or 6His-ExoS(ADPr). After transfection, the activated GTP-Rab5 was determined as described above. Inset, representative immunoblot of samples probed with anti-Rab5 or anti-His tag antibodies. Data represent the mean ± SEM from three independent experiments. Asterisks represent statistically significant differences from control group values (*, \textit{P} < 0.05).
previously shown that ExoS ADPr activity blocked both HRP uptake and EGFR trafficking to lysosomes in CHO and HeLa cells, respectively (15, 45). In directly testing the role of ExoS in modulating Rab5 activation in J774-Eclone macrophages, we found that strain PA103/H9004T/H9004U expressing ExoS(WT) or ExoS(ADPr) activity, but not ExoS(Rho-GAP) activity, diminished levels of GTP-bound Rab5, in conjunction with inhibition of \textit{P. aeruginosa} internalization (Fig. 5A and B). Similarly, transient expression of ExoS(WT) and ExoS(rADPr), but not ExoS(rRhoG), within J774-Eclone cells was found to diminish levels of active GTP-bound Rab5 (Fig. 5D). Our results that ExoS anti-internalization activity was dependent mostly on its ADPr activity differ from those of previous studies in HeLa cells, where the ExoS anti-internalization function was attributed to RhoGAP activity (15, 52). One explanation for this discrepancy is our use of a different cell line, and cell line properties are known to influence the substrate specificity of ExoS (53). The ability of ExoS ADPr, but not its RhoGAP activity, to inactivate Rab5 (Fig. 5A) provides evidence for cell type-dependent mechanisms of phagocytosis, which can be differentiated by ExoS.

Previous studies found that Rab5 might undergo ADP-ribosylation on multiple arginine residues by ExoS (45). This observation, together with the facts that Rab5 is inactivated by ExoS:ADPr activity and that ADP-ribosylation interferes with Rab5 interaction with EEA1, indicates that key functional residues within the GTP-binding motif of Rab5 may be targeted by ExoS. Interestingly, Arg81 is located in switch II of Rab5 proteins, immediately downstream of the second GTP/GDP-binding motif (54), and mutation of Arg81 partially affects Rab5 function (55). Confirmation of Arg81 as well as other Arg residues in Rab5 as targets of ExoS ADPr activity is integral to understanding how ExoS affects Rab5 function.

Since the nucleotide status of Rab5 is integral for \textit{P. aeruginosa} invasion, we examined the role of Rab5-GEFs, Rabex5, Rap6, and Rin1, in Rab5 activation during \textit{P. aeruginosa} internalization. Overexpression of Rin1, and secondarily Rap6, enhanced internalization of heat-inactivated \textit{P. aeruginosa} (Fig. 6A). Consistent with the importance of Rab5 activation to phagocytosis of heat-inactivated \textit{P. aeruginosa}, Rab5 was activated when each of the Rab5-GEFs was overexpressed, albeit to different degrees (Fig. 7). However, when the nucleotide status of Rab5 was analyzed in the presence of live \textit{P. aeruginosa}, only Rin1 significantly overcame the
inactivation of Rab5 in macrophages (Fig. 7). This finding is in agreement with the significant increase in the internalization of live P. aeruginosa in cells overexpressing Rin1 proteins. It is worth noting that Rap6 and Rabex5 also increased levels of active GTP-Rab5, but it was significantly less than expression of Rin1 (Fig. 7). The involvement of Rin1 in Rab5 activation was corroborated by depletion of Rin1, which significantly inhibited the uptake of live P. aeruginosa (Fig. 6C). These results demonstrated for the first time that Rin1 is an essential regulator of Rab5 activation during phagocytosis of live P. aeruginosa.

In conclusion, we have demonstrated that live P. aeruginosa, but not heat-inactivated P. aeruginosa, downregulates Rab5 function in conjunction with inhibition of phagocytosis in J774-Eclone macrophages. Reduced phagocytosis of live P. aeruginosa by macrophages was overcame by expressing a constitutively active Rab5(Q79L) mutant. ExoS ADPPr activity mediated P. aeruginosa inactivation of Rab5, and unlike in previous studies, ExoS ADPr, rather than ExoS GAP, activity was a dominant inhibitor of P. aeruginosa internalization, highlighting cell line differences in mechanisms of P. aeruginosa internalization. Our studies support the hypothesis that increased Rab5 activity can accelerate phagocytosis of live P. aeruginosa and increase its degradation in macrophages. The exact mechanism of action of ExoS toward Rab5 function in macrophages is under investigation.

ACKNOWLEDGMENTS

We thank the Florida International University Foundation for financial support.

We thank Dara Frank for reagents and P. aeruginosa strains.

REFERENCES

