Insulin resistance heralds positive cultures after severe injury

Nathan T. Mowery
Vanderbilt University

Randy J. Carnevale
Vanderbilt University

Oliver L. Gunter
Washington University School of Medicine in St. Louis

Patrick R. Norris
Vanderbilt University

Lesly A. Dossett
Vanderbilt University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/2833

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Insulin Resistance Heralds Positive Cultures after Severe Injury

Nathan T. Mowery,¹ Randy J. Carnevale,² Oliver L. Gunter,⁴ Patrick R. Norris,¹ Lesly A. Dossett,¹ Marcus J. Dortch,² John A. Morris, Jr.,¹ and Addison K. May¹

Abstract

Background: Insulin resistance and hyperglycemia are common in acutely injured patients, and associated with poor outcomes. In the era of tight glucose control, measures of insulin responsiveness (IR) may provide a better indicator of patient status than does the serum glucose concentration. We hypothesized that measures of IR during tight glycemic control protocols are associated with infection and may be more predictive than the serum glucose concentration.

Methods: All critically injured, mechanically ventilated patients undergo protocolized tight glycemic control with the aid of a computer-based system that calculates the insulin dose using an adapting multiplier (insulin dose = [blood glucose – 60) × M]). Consecutive patients on protocol were studied to identify the incidence of positive sterile-site or quantitative bronchoalveolar lavage cultures (>10⁴ colony-forming units/mL). Patients were stratified by presence and number of positive cultures and analyzed by both serum glucose measures and measures of IR (average multiplier and average insulin infusion rate).

Results: During the six-month study period, 356 patients were placed on the tight glycemic control protocol. Of these, 101 patients had 192 positive cultures. Patients with positive cultures required significantly more hourly insulin than those without a positive culture (3.7 vs. 2.8 units/h; p < 0.001). Logistic regression showed the insulin dose (odds ratio 2.1; 95% confidence interval 1.6, 3.0; p < 0.001) and the adapting multiplier to be independent predictors of the patient having a positive culture among other factors associated with nosocomial infection.

Conclusions: Insulin resistance, quantified by hourly insulin dose and median multiplier, confers a higher risk of systemic nosocomial infection. Patients with positive cultures actually had lower admission and median blood glucose values over their intensive care unit stays, highlighting the decreased value of this measure as a predictor of outcome in the setting of tight glucose control. A greater insulin requirement suggesting resistance may be used as a marker of a higher risk of nosocomial infection.

Admission hyperglycemia is a known predictor of death in the trauma population [1,2]. Hyperglycemia at admission and throughout the patient’s hospital stay also correlates significantly with infective complications [3]. An increase in the blood glucose concentration precedes positive cultures [4]. However, as intensive insulin regimens become more effective, distinguishing patients on the basis of clinically significant differences in blood glucose concentration becomes more challenging. The aggressive management of both hypoglycemia and hyperglycemia makes them poor predictors of outcomes. An individual’s response to the initiation of tight glucose control and the response to insulin as a drug provide one method to differentiate these patients.

Persistence of untreated hyperglycemia during the patient’s hospitalization leads to adverse outcomes [5]. Unfortunately, the risk of hypoglycemia and the lack of widespread infrastructure to implement tight glucose control have limited its use in the trauma population. When instituted, protocols have used more liberal goals (80–150 mg/dL) instead of the more widely accepted glucose range (80–110 mg/dL), which have been demonstrated to be effective in other populations. A few studies have had mixed results in applying tight glucose control to the trauma population [6,7].

Although the question of whether hyperglycemia after trauma is an adaptive mechanism or a pathologic response to stress remains, an increasing body of literature suggests
that the aggressive management of glucose leads to better outcomes [8–12]. These studies have been questioned because of conflicting data [13], but tight glucose control remains the standard in the intensive care setting around the world.

We sought to compare persistent hyperglycemia with escalating insulin dose as a means of identifying patients at risk for infective complications. We developed a computer-based decision support system to assist in the maintenance of euglycemia in critically patients that captures all glucose values, insulin doses, and a mathematical multiplier (M) to determine the insulin dose for each patient. We hypothesized that insulin dose and the adapting multiplier used in a tight glucose control protocol are better markers of nosocomial infection risk than are summary measures of blood glucose.

Patients and Methods

Nine hundred seventy-seven patients were admitted to the Vanderbilt University Trauma Service from October 4, 2005 to April 2, 2006. There were 356 patients who met the study criteria (mechanical ventilation and blood glucose concentration <110 mg/dL) and were treated with the tight glucose control protocol utilizing the computer order entry system. Those with fewer than five glucose values or not surviving the initial 24 h of admission were excluded (Fig. 1).

Insulin protocol

Vanderbilt University developed a computerized care provider order entry (CPOE) system that facilitates maintenance of euglycemia (blood glucose 80–110 mg/dL) using an intravenous insulin infusion. The adjusted insulin dose is determined by a linear equation that utilizes an adaptable multiplier based on the glucose response from the previous dosing period and is calculated every 2 h. The adaptability of M to various physiologic demands throughout a patient’s hospitalization is a key characteristic of the protocol. The insulin dose (units/h) is calculated using the formula:

\[
\text{Dose} = M \times \left[\frac{\text{blood glucose (mg/dL)}}{60} \right]
\]

The M is initially set at 0.03 and can never fall below zero. The insulin dose is altered with an adapting multiplier, which is controlled by a set of rules (Fig. 2). The multiplier increases and decreases in relation to the distance from the goal range of 80–110 mg/dL; i.e., if the most recent blood glucose concentration is 58 mg/dL, the multiplier decreases by 0.02 whereas if it is 77 mg/dL, the dose would be decreased by only 0.01. The multiplier continues to be titrated until the goal range is reached and then does not change until the blood glucose concentration once again falls outside the range. The protocol titration has been shown to be effective in maintaining euglycemia [14, 15].

![FIG. 1. Study design. BS = blood sugar.](image)

![FIG. 2. Description of the insulin protocol titration, blood glucose is checked on a q 2hr basis.](image)
On admission, all patients are started on a glucose source consisting of intravenous dextrose (D5 or D10) to deliver partial nutritional support (5–10 g/h) unless enteral or parenteral feeding is being delivered. Enteral nutritional support is initiated as soon as the attending physician believes it to be safe. Parenteral nutritional support is initiated on day 5 of the patient’s intensive care unit (ICU) stay if 70% of goal nutrition cannot be attained enterally and continued until enteral support is adequate. Nutrition goals have been established according to published standards with 20 to 24 non-protein kcal/kg of body weight per 24 h [16].

Blood glucose measurements are performed on protocol by a member of the nursing staff using the SureStep® Pro (One-Touch®) Professional Blood Glucose Monitoring System (http://www.lifescan.com/professionals/products/sspro/). Measurements were taken at 2-h intervals except after hypoglycemic events (blood glucose <60 mg/dL), which trigger a repeat measurement within 1 h. The insulin protocol produced entries that consist of a blood glucose value, multiplier value, insulin dose, glucose source, time, and date.

Data collection

Demographic, hospital outcome, and pharmacy data were obtained from electronic hospital records and databases. Information necessary to determine the severity of illness was obtained at admission and recorded in an institutional database. Scores were calculated for the simplified Injury Severity Score (ISS) [17]. Higher scores indicate more severe illness.

The study was approved by the Institutional Review Boards of Vanderbilt University Medical Center. All data are maintained in a secure, password-protected database compliant with the Health Insurance Portability and Accountability Act. All patient information is de-identified prior to analysis and reporting.

Outcome measures

Infections were classified according to the definitions of the U.S. Centers for Disease Control and Prevention. Pulmonary infection was diagnosed when a predominant organism was isolated from an appropriately obtained culture in the setting of purulent sputum production, a new or changing infiltrate on chest radiography, and systemic evidence of infection.

Quantitative bronchoalveolar lavage was used exclusively (>10^4 organisms/mL considered positive). Blood stream infections (BSI) were diagnosed by the isolation of organisms from a blood culture from any site, with the exception of Staphylococcus epidermidis or other coagulase-negative staphylococci, which required isolation from two sites to be evidence of BSI. Criteria for urinary tract infection were isolation of >10^5 organisms/mL of urine or >10^5 organisms/mL accompanying dysuria. Criteria for catheter-related infection included isolation of 15 or more colony-forming units from catheter tips by a semiquantitative roll plate technique in the setting of suspected infection (systemic symptoms or localized purulence). Wound infections were diagnosed clinically, and cultures were considered positive if a pathologic organism was isolated from swab cultures. Patients were stratified by the presence and number of positive cultures and analyzed by both serum glucose measures and measures of insulin resistance (IR) (average multiplier and average insulin infusion rate). Secondary outcome measures were hospital length of stay (LOS), ICU LOS, and ventilator days.

Statistical analysis

Normally distributed continuous variables were summarized by reporting the mean and standard deviation and compared using analysis of variance (ANOVA) for independent samples. Continuous variables that were not normally distributed were presented by reporting the median and interquartile range (IQR) and compared using the Mann-Whitney U test. Continuous matched data were compared using a Wilcoxon matched pairs test. Differences in proportions were compared using a chi-square or Fisher exact test. A two-sided p value <0.05 was considered statistically significant. The SPSS version 15.0 (SPSS Corp., Chicago, IL) was used for analysis.

Results

Study population

A total of 356 patients were enrolled with an overall mortality rate of 13.8% (n = 49). On admission, 39 patients (11.0%) had a medical history of diabetes mellitus, with 35 of the 39 (89.7%) being non-insulin dependent diabetics (NIDDM) and the remainder having insulin-dependent diabetes (IDDM). As

Table 1. Demographics of Study Group

<table>
<thead>
<tr>
<th>Measure (total)</th>
<th>19,126</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean blood glucose (mg/dL)</td>
<td>121 (SD ± 22)</td>
</tr>
<tr>
<td>Median blood glucose (mg/dL)</td>
<td>116 (IQR 109–126)</td>
</tr>
<tr>
<td>No. (%) in range</td>
<td>8,178 (42.8)</td>
</tr>
<tr>
<td>No. (%) in range</td>
<td>15,396 (80.5)</td>
</tr>
<tr>
<td>≤60 mg/dL (%)</td>
<td>360 (1.9)</td>
</tr>
<tr>
<td>≤40 mg/dL (%)</td>
<td>48 (0.2)</td>
</tr>
</tbody>
</table>

9.8% of patients experienced one hypoglycemic episode

IQR = interquartile range.

Table 2. Measures of Glucose Control

<table>
<thead>
<tr>
<th>Measure (total)</th>
<th>19,126</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean blood glucose (mg/dL)</td>
<td>121 (SD ± 22)</td>
</tr>
<tr>
<td>Median blood glucose (mg/dL)</td>
<td>116 (IQR 109–126)</td>
</tr>
<tr>
<td>No. (%) in range</td>
<td>8,178 (42.8)</td>
</tr>
<tr>
<td>No. (%) in range</td>
<td>15,396 (80.5)</td>
</tr>
<tr>
<td>≤60 mg/dL (%)</td>
<td>360 (1.9)</td>
</tr>
<tr>
<td>≤40 mg/dL (%)</td>
<td>48 (0.2)</td>
</tr>
</tbody>
</table>

9.8% of patients experienced one hypoglycemic episode

IQR = interquartile range.
Injury Severity Score 34.2

/C20 survivors (0.047) (p
also was higher in culture-positive patients (0.071) than in values than the patients experiencing none or one positive

adapting multiplier but actually had lower median glucose
cultures required significantly more insulin and had a higher
number of positive cultures. Patients with multiple positive
cultures had demographic characteristics similar to the pa-
tients who did not experience post-traumatic sepsis, with only
culture had demographic characteristics similar to the pa-
patients who had 192 positive cultures. Patients who had a positive
placed on the tight glycemic control protocol. Of these, 101
number of positive cultures and median insulin rate and
the ISS being significantly different (Table 3). Analysis of the
tients who did not experience post-traumatic sepsis, with only
DICM patients having median blood glucose values similar
to those of non-infected patients. As a result, additional
blood glucose is manipulated artificially, the ability to dis-

Patients were divided into groups according to the pres-
ence or absence of a nosocomial infection during their hos-
pitalization. The admission blood glucose concentration was
statistically different between the groups (113 mg
dL for culture-negative and 118 mg/dL for culture-positive; p
< 0.001). The mean multiplier was significantly higher in the culture-positive group (3.7 U/h vs. 2.8 U/h; p
< 0.001). The mean multiplier also was higher in culture-positive patients (0.071) than in survivors (0.047) (p
< 0.001).

Blood glucose control

Patients were divided into groups according to the pres-
ence or absence of a nosocomial infection during their hos-
pitalization. The admission blood glucose concentration was
significantly higher in the group not experiencing a positive
culture (150 mg/dL for culture-positive patients and 163 mg/dL for those without a positive culture; p = 0.01). The
median glucose concentration for the entire group was 121 ± 22 mg/dL. There were 360 episodes of hyper-
glycemia (≤60 mg/dL) documented in 4,918 patient-days and 19,126 glucose values with corresponding insulin indices available for all (Tables 1 and 2).

Infective complications

During the six-month study period, 356 patients were
placed on the tight glycemic control protocol. Of these, 101
patients had 192 positive cultures. Patients who had a positive
culture had demographic characteristics similar to the pa-
tients who did not experience post-traumatic sepsis, with only
the ISS being significantly different (Table 3). Analysis of the
number of positive cultures and median insulin rate and glucose measures are shown in Table 4.

Patients were then divided into groups on the basis of the
number of positive cultures. Patients with multiple positive
cultures required significantly more insulin and had a higher
adapting multiplier but actually had lower median glucose
values than the patients experiencing none or one positive
culture (Tables 5 and 6). Logistic regression showed insulin
dose (odds ratio [OR] 2.1; 95% confidence interval [CI] 1.6, 3.0; p
≤ 0.001) and the adapting multiplier as independent pre-
dictors of a positive culture among other factors associated
with nosocomial infection (Table 7).

The temporal relation of glucose control and infection was
examined by taking the 149 patients having cultures and di-
viding them into those with a positive culture (Table 8) and
those who had a negative culture (Table 9). We then examined
measures of glucose control in the 24 h preceding and fol-
lowing culture.

Discussion

Tight glycemic control has become the gold standard in
critical care settings around the world. Initial acceptance was
based largely on a single-institution trial in a predominately
cardiac population [18]. Despite this narrow study, the results
have been applied to multiple critically ill populations, in-
cluding trauma victims. Within these other studies, patients
randomized to tight glucose control demonstrated fewer in-
fected complications.

Many clinicians have observed that hyperglycemia usually
precedes infections. In an era of tight glucose control where
blood glucose is manipulated artificially, the ability to dis-

Photo-506 MOWERY ET AL.

Table 3. Comparison of Demographic Features of Patients With and Without a Positive Culture

<table>
<thead>
<tr>
<th></th>
<th>Culture positive (n = 101)</th>
<th>No positive culture (n = 255)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>42 ± 20</td>
<td>43 ± 21</td>
<td>0.92</td>
</tr>
<tr>
<td>Male sex (%)</td>
<td>76 (75.2)</td>
<td>177 (69.4)</td>
<td>0.27</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>27.3 ± 7.0</td>
<td>26.2 ± 6.0</td>
<td>0.41</td>
</tr>
<tr>
<td>Injury Severity Score</td>
<td>34.2 ± 12.0</td>
<td>26.6 ± 12.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes (%)</td>
<td>9 (8.7)</td>
<td>26 (10.4)</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Data presented as mean ± standard deviation except as noted.

Table 4. Outcome Measures in Patients Who Had One Positive Culture and Those Who Did Not

<table>
<thead>
<tr>
<th></th>
<th>Positive culture (n = 101)</th>
<th>No positive cultures (n = 255)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin rate (units/h)</td>
<td>3.7 (2.8–5.5)</td>
<td>2.8 (2.0–3.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Multiplier</td>
<td>0.071 (0.053–0.100)</td>
<td>0.047 (0.037–0.063)</td>
<td><0.001</td>
</tr>
<tr>
<td>Admitting glucose concentration (mg/dL)</td>
<td>150.0 (128–186)</td>
<td>163 (137–203)</td>
<td>0.013</td>
</tr>
<tr>
<td>Median blood glucose (mg/dL)</td>
<td>113.0 (107–119)</td>
<td>118 (110–128)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Data presented as median (interquartile range).
The hyperglycemic state that occurs during critical illness is, to a significant degree, related to the development of insulin resistance induced by elevated stress hormone and cytokine response [19–21]. This stress response results in altered glucose metabolism in both the liver (non-reversible with insulin therapy) and the skeletal muscle (reversible with insulin therapy) [22–26]. Insulin resistance is defined as unresponsiveness to the normal effects of insulin and occurs when the metabolic features of insulin deficiency (hyperglycemia, increased lipolysis, and protein catabolism) are observed in the presence of normal or raised concentrations of plasma insulin [27].

In this study, we used the algorithm multiplier as a biomarker for insulin resistance. Reliable markers of insulin resistance have been difficult to identify, making the relation between insulin and blood glucose challenging. These markers of insulin resistance have focused on complex cytokine and genetic expression that make bedside evaluation difficult [28–30]. A higher multiplier, translating into a patient’s receiving larger insulin doses to remain within the goal range, was associated with more infections. We have previously shown that a higher multiplier also is associated with death [31]. We have demonstrated also that the multiplier is highly variable across the surgically ill population, as well as during a patient’s admission. This variability is a reflection of an individual’s unpredictable response to tight insulin control. It also frames the view that the importance of a patient’s response to the initiation of tight glucose control can be more predictive than the absolute numbers (mean blood glucose concentration) while on protocol.

In univariable analysis, the patients who did not have a positive culture during the admission actually had higher median glucose values. This likely was attributable to their shorter ICU stays and shorter time to reach the steady state of glucose control. In contrast, multivariable analysis showed that lower median glucose values over a patient’s hospitalization decreased the chances of nosocomial infection. The strongest predictor of infection was the insulin dose, with every additional unit a patient required conferring more than a two-fold increase in the likelihood of a positive culture. This relation was present even when controlling for LOS and severity of injury at presentation.

We attempted to demonstrate a temporal relation between markers of insulin resistance and a positive culture. We found that the blood glucose concentration was nearly identical before and after cultures were obtained regardless of whether the culture was positive or negative. We had expected this result, given the effectiveness of the glucose protocol. Negative cultures had no significant differences between pre- and post-insulin resistance markers, as expected. We were unable to demonstrate a significant increase in the insulin dose preceding a positive culture. This may have been a by-product of the protocol, with only small changes in the insulin dose occurring every 2h. It may also be a result of the anti-inflammatory actions of insulin itself. Finally, it may be that insulin resistance does not develop rapidly enough to be documented by examining only 24-h windows. The patients who expressed increased insulin resistance over their entire hospital course did indeed have a higher incidence of positive cultures, but we were unable to document a temporal relation.
between measures of glucose control in the 24 h surrounding acquisition of cultures.

Our prior work in a more diverse critical care population showed that patients’ responses to tight glucose control are variable, and the degree to which a patient manifests insulin resistance may be predictive of outcome. This variability of response emphasizes the point that a protocol for tight insulin control must be able to adapt in real time to patient physiology. It also illustrates that the response to exogenous insulin is heterogeneous and likely an interaction of multiple genotypic and phenotypic factors that are still being established [31]. These data support the view that the individual patient’s response to attempts to control the hyperglycemic response can itself be an important predictor of outcome.

One limitation of this study is our inability to control for the amount of glucose given to these patients except that they were all on a rigid nutritional protocol. Basic science research indicates that nondiabetic hospitalized patients who receive dextrose solutions at rates >4 g/kg/min (e.g., total parenteral nutrition [TPN] solutions) have a 50% chance of developing hyperglycemia [32]. There were 20 patients of the 356 who received TPN during their admissions. The patients with a positive culture did receive more TPN than those who never had a positive culture (16% vs. 1.6%; p < 0.001). When excluding the patients on TPN from analysis, the insulin dose remains significantly elevated in the patients with a positive culture (3.5 units/h vs. 2.8 units/h; p < 0.001); this holds true for the multiplier as well (0.070 vs. 0.464; p < 0.001). This finding supports the idea that TPN use is correlated with a higher infection risk, but does not explain all the increase in morbidity, these data do suggest that insulin resistance is more pronounced in patients who have multiple positive cultures. Controlling hyperglycemia can decrease infection [18], but there still exists a group with a higher risk of infection. Early identification of these patients can lead to greater vigilance. These patients’ expression of insulin resistance helps better define a population that has morbidity and mortality rates higher than their injuries would predict. Recognition of the patients at risk must serve as a warning until a time when augmentation of the underlying insulin resistance can be addressed pharmaceutically or with the aid of genetic manipulation.

Conclusions

In an era in which tight glucose control is considered standard, we continue to strive to evaluate how individual patients respond to attempts to maintain euglycemia. Insulin resistance quantified by hourly insulin dose and median multiplier confers a higher risk of systemic nosocomial infection. Patients with positive cultures actually had lower admission and median blood glucose values over their ICU stays, highlighting the lesser value of this measure as a predictor of outcome in the setting of tight glucose control. A greater insulin requirement suggesting insulin resistance can be used as a marker for a higher risk of nosocomial infection.

Author Disclosure Statement

This project was supported by departmental funds. The authors have no financial disclosures.

References

Address correspondence to:
Dr. Nathan T. Mowery
Department of Surgery
Wake Forest University Medical School
Medical Center Blvd.
Winston-Salem, NC 27157

E-mail: nmowery@wfubmc.edu