Actin scaffolding by clathrin heavy chain is required for skeletal muscle sarcomere organization

Stéphane Vassilopoulos
Institut National de la Santé et de la Recherche Médicale

Christel Gentil
Institut National de la Santé et de la Recherche Médicale

Jeanne Lainé
Institut National de la Santé et de la Recherche Médicale

Pierre-Olivier Buclez
Institut National de la Santé et de la Recherche Médicale

Agathe Franck
Institut National de la Santé et de la Recherche Médicale

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation
Vassilopoulos, Stéphane; Gentil, Christel; Lainé, Jeanne; Buclez, Pierre-Olivier; Franck, Agathe; Ferry, Arnaud; Précigout, Guillaume; Roth, Robyn; Heuser, John E.; Brodsky, Frances M.; Garcia, Luis; Bonne, Gisèle; Voit, Thomas; Piétri-Rouxel, France; and Bitoun, Marc, "Actin scaffolding by clathrin heavy chain is required for skeletal muscle sarcomere organization." _The Journal of Cell Biology_. 205, 3. 377-393. (2014). https://digitalcommons.wustl.edu/open_access_pubs/2929

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Actin scaffolding by clathrin heavy chain is required for skeletal muscle sarcomere organization

Stéphane Vassilopoulos,1,2,3,4 Christel Gentil,1,2,3,4 Jeanne Lainé,1,2,3,4,5 Pierre-Olivier Buclez,1,2,3,4 Agathe Franck,1,2,3,4 Arnaud Ferry,1,2,3,4 Guillaume Précigout,1,2,3,4,7 Robyn Roth,8 John E. Heuser,8 Frances M. Brodsky,9 Luis Garcia,1,2,3,4 Gisèle Bonne,1,2,3,4 Thomas Voit,1,2,3,4 France Piétri-Rouxel,1,2,3,4 and Marc Bitoun1,2,3,4

1Institut National de la Santé et de la Recherche Médicale (INSERM) U974, 2Centre National de la Recherche Scientifique (CNRS) UMR 7215, and 3Université Pierre et Marie Curie–Paris 6, 4UM 76, Paris F-75013, France
5Département de Physiologie, Université Pierre et Marie Curie–Paris 6, Site Pitié-Salpêtrière, Paris F-75013, France
6Université Paris Descartes–Paris 5, 75006 Paris, France
7Université de Versailles – Saint-Quentin-en-Yvelines, 78000 Versailles, France
8Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110
9Departments of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143

The ubiquitous clathrin heavy chain (CHC), the main component of clathrin-coated vesicles, is well characterized for its role in intracellular membrane traffic and endocytosis from the plasma membrane (PM). Here, we demonstrate that in skeletal muscle, CHC regulates the formation and maintenance of PM–sarcomere attachment sites also known as costameres. We show that clathrin forms large coated lattices associated with actin filaments and the muscle-specific isoform of α-actinin at the PM of differentiated myotubes. Depletion of CHC in myotubes induced a loss of actin and α-actinin sarcomeric organization, whereas CHC depletion in vivo induced a loss of contractile force due to the detachment of sarcomeres from the PM. Our results suggest that CHC contributes to the formation and maintenance of the contractile apparatus through interactions with costameric proteins and highlight an unconventional role for CHC in skeletal muscle that may be relevant to pathophysiology of neuromuscular disorders.

Introduction

Clathrin is composed of trimerized heavy chains (CHCs) with bound light chains (CLCs) and assembles to form a membrane coat. The clathrin lattice formation on cellular membranes is initiated by clathrin adaptors that are drawn into the lattice and trigger clathrin-coated vesicle (CCV) budding at various subcellular compartments (Pearse and Robinson, 1990; Kirchhausen, 1999; Brodsky, 2012). Once the invagination process has initiated, dynamin family members associate with the neck of the forming pit, recruit additional proteins including actin, and allow the scission of the coated vesicle (Fujimoto et al., 2000; Merrifield et al., 2002). The role of dynamin 2 (DNM2) in skeletal muscle has received considerable attention because the autosomal-dominant form of centronuclear myopathy (CNM) has been linked to mutations in the DNM2 gene (Bitoun et al., 2005). DNM2 is involved in various cellular processes, but to date it remains unclear whether its role in CCV fission is implicated in centronuclear myopathy.

Several recent studies have proposed a role for clathrin and dynamin in actin organization that is distinct from coated vesicle formation (Schafer et al., 2002; Veiga et al., 2007; Saffarian et al., 2009; Bonazzi et al., 2011, 2012). Intriguingly, a role for clathrin in myofibril assembly was previously proposed (Kaufman et al., 1990), and several teams have reported direct protein–protein interaction between CHC, α-actinin, and vinculin, two focal adhesion proteins crucial for muscle function (Schook et al., 1979; Burridge et al., 1980; Merisko, 1985;...
muscle costamerogenesis and costamere maintenance. We show that clathrin associates with α-actinin at the surface of myotubes and forms large plaques that are associated with actin filaments. Depletion of CHC induces severe defects in α-actinin distribution and subsequently leads to defective costamere formation in vitro and induces impairment of contractile properties associated with structural abnormalities including sarcomere disorganization as well as detachment of the sarcomeres from the sarcolemma in vivo.

Results

CHC is a component of the costameric complex in skeletal muscle

In adult skeletal muscle, DNM2 and CHC are both localized at the level of the I-band and present a striated pattern that overlaps with the muscle-specific α-actinin (isoform 2) staining.
Clathrin heavy chain is required for sarcomere organization • Vassilopoulos et al.

Amounts of vinculin and talin. Additionally, minor amounts of \(\alpha \)-actinin are detected upon clathrin immunoprecipitation while vinculin coimmunoprecipitates talin efficiently and some \(\alpha \)-actinin, but not clathrin. This suggests that part of the \(\alpha \)-actinin pool is associated with clathrin in a complex distinct from the vinculin–talin–\(\alpha \)-actinin complex.

We further characterized the sites of interaction between CHC and \(\alpha \)-actinin during the early steps of differentiation in primary myotubes and showed that these proteins partially colocalize along the plasma membrane (PM) after 4 d of differentiation (Fig. 2 A). By subcellular fractionation, we observed an association between \(\alpha \)-actinin and CHC in the PM fraction of fibroblasts, myoblasts, and differentiated myotubes. This association was stronger in differentiated myotubes as the levels of \(\alpha \)-actinin expression increase (Fig. 2, B and C). In addition, we detected \(\alpha \)-actin in both CHC and \(\alpha \)-actinin immunoprecipitates from muscle cells. Several adaptor proteins are required

Figure 2. CHC association with \(\alpha \)-actinin and actin at the PM of differentiated myotubes. (A) Localization of \(\alpha \)-actinin (green) and CHC (red) in mouse primary myotubes differentiated for 4 d. Inset in Overlay panel is displayed on the right. (B) Immunoblot analysis of proteins associated with CHC or control immunoprecipitates from subcellular fractions (plasma membrane, PM and cytosol, CYT) of 3T3 fibroblasts (FB), undifferentiated C2C12 (MB), and differentiated C2C12 (MT). (C) Immunoblot analysis of proteins associated with \(\alpha \)-actinin or control immunoprecipitates from subcellular fractions (PM and CYT) of 3T3 fibroblasts (FB), undifferentiated C2C12 (MB), and differentiated C2C12 cells (MT). (D) Confocal microscopy of AP2 (green) and CHC (red) in differentiated C2C12 skeletal muscle cells. The left panel displays images from the top of the myotube and the right panel displays images from the middle of the myotube. Arrows indicate large clusters of colocalization between AP2 and CHC and arrowheads indicate intracellular clusters near the nuclei positive for CHC and negative for AP2. (E) XZ and YZ projections of serial confocal sections are shown on the overlay. Bar, 10 \(\mu \)m.
Deep-etch rotary replication and electron microscopy (Heuser, 1980). We showed that clathrin forms two distinct coated structures, i.e., large plaques that contain much more polymerized clathrin than would be required to form a single vesicle (pseudo-colored in red in Fig. 3, D and F) and coated vesicles found in regions devoid of plaques (Fig. 3, D and F; and Fig. S1, C–G). Using clathrin antibodies we were able to confirm that CHC was indeed the proteinaceous material composing these structures (Fig. S1, C–K). As expected, α-actinin strongly labeled dense longitudinally organized actin filament bundles (Fig. 3 D, arrows; and Fig. S2, A and B) that are reminiscent of the contractile apparatus. In addition, α-actinin was associated with actin filaments that surround or overlap flat clathrin lattices (Fig. 3, E and G; and Fig. S2, A, C, and D) highly enriched with the adhesion marker β5 integrin (Fig. S2, E–H) as previously described on rat myotubes (De Deyne et al., 1998; Pumplin, 1989; Pumplin and Bloch, 1990), whereas vinculin was not localized at these clathrin-coated plaques (unpublished data).

Costameric clathrin forms large plaques where α-actinin and actin are localized
Myofibril assembly and subsequent sarcomere formation initiate at the PM. After the formation of a subcortical actin lattice, additional nascent sarcomeres keep adding to the initial actin network (Dlugosz et al., 1984; Epstein and Fischman, 1991; Sanger et al., 2002; Quach and Rando, 2006). We hypothesized that α-actinin and actin rely on a clathrin scaffold at the PM to start recruiting additional myofibrils and explored this possibility using immunogold cytochemistry coupled with quick-freeze, deep-etch rotary replication and electron microscopy (Heuser, 1980). We showed that clathrin forms two distinct coated structures, i.e., large plaques that contain much more polymerized clathrin than would be required to form a single vesicle (pseudo-colored in red in Fig. 3, D and F) and coated vesicles found in regions devoid of plaques (Fig. 3, D and F; and Fig. S1, C–G).

Figure 3. α-Actinin and actin are localized on large flat clathrin-coated plaques. (A–C) Immunofluorescent staining of α-actinin (A), CHC (B), and merged images (C) in untreated differentiated primary mouse myotubes visualized using confocal microscopy. Bars, 5 µm. (D–G) Adherent plasmalemmal sheets prepared from control primary myotubes differentiated for 4 d and labeled with α-actinin antibodies followed by secondary antibodies conjugated to 18-nm colloidal gold particles. Gold particles are pseudocolored yellow (D–G) and clathrin lattices are pseudocolored pale red (D and F). The boxed region in D and F is magnified in E and G, respectively. Note that α-actinin is found on both actin cables (D, arrows) and branched filaments lying on top of flat clathrin-coated lattices. Bars, 100 nm.
As expected, control myotubes present a striated α-actinin distribution after 6 d of differentiation. This striated pattern is first visible at the periphery of the myotube and gradually fills the entire cytoplasm (Quach and Rando, 2006). In CHC-depleted myotubes, the α-actinin striated pattern was strongly disrupted, and instead, clusters of α-actinin were randomly dispersed in the intracellular space (Fig. 4 C). 3D projections of confocal sections confirmed a dramatic reduction of the striated pattern between controls and CHC-depleted myotubes (Fig. 4 D). Upon CHC depletion, a similar phenotype arises in mouse primary myotubes (Fig. 4, E and F) in which organization of actin filaments is also affected. To determine the role played by clathrin during the early steps of costamere formation, we performed siRNA depletion experiments on C2C12 myotubes after 4 d of differentiation, before α-actinin and actin could reach a striated organization. In control myotubes, α-actinin expression levels of α-actinin, vinculin, and talin were unaffected in myotubes treated with CHC siRNA (Fig. 4 A). Our experiments on primary myotubes show that CHC forms large plaques that may serve to anchor the actin cytoskeleton and α-actinin.

CHC is required for the formation of costameres

We next tested the effect of CHC knockdown on α-actinin subcellular organization. We achieved high knockdown efficiency in C2C12 myotubes differentiated for 6 d (Fig. 4, A and B) with two previously published siRNA sequences (Ezratty et al., 2009). Additionally, we showed that levels of CLC were also reduced because of the instability of the light chain upon heavy chain depletion, as previously reported in nonmuscle cells (Brodsky, 1985; Esk et al., 2010). Expression levels of α-actinin, vinculin, and talin were unaffected in myotubes treated with CHC siRNA (Fig. 4 A). As expected, control myotubes present a striated α-actinin distribution after 6 d of differentiation. This striated pattern is first visible at the periphery of the myotube and gradually fills the entire cytoplasm (Quach and Rando, 2006). In CHC-depleted myotubes, the α-actinin striated pattern was strongly disrupted, and instead, clusters of α-actinin were randomly dispersed in the intracellular space (Fig. 4 C). 3D projections of confocal sections confirmed a dramatic reduction of the striated pattern between controls and CHC-depleted myotubes (Fig. 4 D). Upon CHC depletion, a similar phenotype arises in mouse primary myotubes (Fig. 4, E and F) in which organization of actin filaments is also affected. To determine the role played by clathrin during the early steps of costamere formation, we performed siRNA depletion experiments on C2C12 myotubes after 4 d of differentiation, before α-actinin and actin could reach a striated organization. In control myotubes, α-actinin
CHC, AP2, and DNM2 but not AP1 or AP3 depletion in cultured mouse myotubes perturbs α-actinin distribution before striations appear. (A) Differentiated C2C12 myotubes were treated with siRNA targeting proteins indicated at the left. Immunofluorescent staining of α-actinin in myotubes treated with control siRNA against GAPDH or siRNA targeting either CHC, AP1, AP2, AP3, or DNM2. DNA staining (DAPI blue) identifies differentiated, multinucleated myotubes. The boxed region in the merged images is magnified in the insets. Bars: (main panels) 10 µm; (insets) 5 µm. (B) Quantification of α-actinin fluorescence surface as a function of total myotube surface in 4-d differentiated myotubes treated with siRNA against GAPDH, CHC, AP1, AP2, AP3, or DNM2 (n = 30–50 myotubes, data are presented as mean ± SEM; **, P < 0.01).

was mainly localized along the PM. In stark contrast, myotubes that had been depleted of CHC presented a strong increase in the amount of intracellular α-actinin (Fig. 5 A). These results demonstrate that CHC is required for proper α-actinin distribution during early myotube differentiation.

AP2 and DNM2 are required for α-actinin scaffold formation

We next tested the effect of AP2 knockdown on α-actinin subcellular localization. AP2 (α-subunit) depletion by siRNA (Fig. S3 C) induced a strong decrease in the amount of CHC recruited at the PM. More importantly, AP2 knockdown phenocopied the effect of CHC depletion on α-actinin distribution and dramatically increased the intracellular α-actinin staining (Fig. 5). We have also depleted the AP1 (γ-subunit) and AP3 (δ-subunit) adaptors responsible for CHC targeting at the Golgi apparatus and endosomal systems. As expected, AP1 and AP3 were localized at the perinuclear region and in intracellular structures dispersed throughout the myotube (Fig. S3 A). siRNA depletion of AP1 and AP3 drastically reduced the intracellular CHC staining without affecting CHC localization at the PM (unpublished data). Moreover, knockdown of AP1 and AP3 had no effect on α-actinin distribution (Fig. 5), suggesting that the impact of CHC depletion on α-actinin organization is not due to perturbations of the secretory pathway or trafficking between the endo/lysosomal system.

DNM2 is also present at or near the plasma membrane of differentiating myotubes, where its staining partially overlaps with that of α-actinin (Fig. S4 C). AP2 depletion strongly reduced the amount of DNM2 at the plasma membrane, suggesting that part of the PM staining corresponds to an association with clathrin lattices (Fig. S4 D). Efficient DNM2 depletion (Fig. S3 A) induced an increase in the amount of intracellular α-actinin staining (Fig. 5 and Fig. S4 A). Of interest, these intracellular aggregates observed upon CHC, AP2, and DNM2 depletion also contain actin aggregates (Fig. S4 A).

Hip1R depletion stabilizes α-actinin and actin on clathrin-coated structures

Actin has been shown to be present at CCVs (Collins et al., 2011), and a requirement for actin has been suggested for clathrin
Hip1R-depleted myotubes accumulated unusual actin structures near the cell cortex (Fig. 6). These structures, which are very similar to the ones observed by Engqvist-Goldstein et al. (2004) upon Hip1R depletion in HeLa cells, took a variety of forms, including tails and rings at the bottom and the top of differentiated myotubes (Fig. 6 and Fig. S4 B). These results demonstrate that when Hip1R expression is reduced, actin polymerization at clathrin-coated structures is no longer properly regulated and results in accumulation of actin and α-actinin on clathrin-coated plaques.

CHC is required for sarcomere maintenance in mature isolated muscle fibers

We then assessed the function of CHC in mature skeletal muscle fibers. For this purpose, we developed an AAV strategy combined with the use of a short hairpin RNA (shRNA) against CHC (AAV-shCHC) for ex vivo transduction of isolated fibers.
CHC is required for sarcomere maintenance in adult fibers. (A) Quantitative RT-PCR and (B) Western blot analysis of CHC levels and proteins indicated at the right in FDB fibers infected with AAV-CTRL or AAV-shCHC for 12 d in vitro. (C) Quantification of Western blot CHC band intensity (n = 3, data are presented as mean ± SEM; for A and C: **, P < 0.01). (D–G) Confocal microscopy of dissociated FDB fibers infected with AAV-CTRL or AAV-shCHC for 12 d and co-stained with antibodies against either α-actinin and CHC (D), α-actinin and DNM2 (E), or F-actin (phalloidin staining) and caveolin-3 (F and G). All bars, 10 μm.

from flexor digitorum brevis (FDB) muscle. In AAV-shCHC–infected fibers, a strong decrease in CHC expression was confirmed, both at the RNA and protein level (Fig. 7, A–C), and α-actinin was no longer correctly localized, with very few striations noticeable and displaying a diffuse or disorganized staining pattern (Fig. 7 D). We also tested the effect of CHC depletion on DNM2 distribution. In control fibers, DNM2 displayed a striated pattern at the surface, with each striation being centered on the I-band, and in the core of the fiber DNM2 was mainly present at the PM (Durieux et al., 2010; Cowling et al., 2011). In fibers depleted of CHC, the DNM2 signal at the core of the fiber was greatly reduced at the PM (Fig. 7 E). To assess the effect of CHC depletion on the integrity of the actin cytoskeleton we used phalloidin staining. In control fibers, F-actin displayed a regularly spaced striated distribution. However, CHC-depleted fibers presented a diffuse actin distribution (Fig. 7 F), and in some fibers detachment of entire sarcomeric bundles (Fig. 7 G). In addition to its role in costamerogenesis, these data suggest that CHC is also involved in their preservation in mature fibers.
In vivo CHC depletion impairs force and causes muscle degeneration

We used AAV-shCHC in order to induce an in vivo depletion of CHC in tibialis anterior (TA) muscle. By performing hematoxylin and eosin staining on transverse TA sections (Fig. 8 A), no histological change was visible in muscles injected with control AAV or with AAV-shCHC until day 18 post-injection (PI). However, fibers displaying a rounded shape with a clearly disorganized intracellular space were noticed at day 21 PI. Between days 21 and 23 PI some degenerating fibers appeared, and by day 25 PI the vast majority of the fibers had a rounded shape with a clear degenerating phenotype. As a general feature of muscle degeneration, an immune infiltration was visible at day 21 and was extremely pronounced by days 23 and 25 PI. At day 25, small myotubes appeared and their presence reached a peak by day 38 where the majority of the muscle was centrally nucleated, the signature of a muscle undergoing massive regeneration.

Quantitative RT-PCR and Western blot analysis confirmed that at day 18 PI a strong decrease in CHC had indeed occurred (Fig. 8, B–D). When we measured CHC RNA and protein levels at later time points, we noticed that CHC levels increased from 40% back to 55% of control levels at day 21 PI and were back to control levels by day 23. Surprisingly, at day 25 PI, CHC levels were higher in the AAV-shCHC–injected muscle compared with the contralateral control muscle (Fig. 8, B and C). A possible explanation is that the infiltration by macrophages contaminates our analysis with exogenous clathrin from nontransduced immune cells. Indeed, at days 21, 23, and 25 PI a strong increase in CD11b protein levels was evident (Fig. 8 C and Fig. S5, A and B). Immunofluorescent staining confirmed that CD11b-positive macrophages had massively infiltrated the CHC-depleted muscle. In fact, CD11b protein levels correlated perfectly with the sudden increase in CHC levels. To circumvent the immune infiltration and to show that a clathrin knockdown had occurred, we performed immunoprecipitation experiments using antibodies against the muscle-specific α-actinin isoform. This assay enabled us to show that in muscles injected with AAV-shCHC, there was a strong decrease in the amount of CHC which immunoprecipitated with α-actinin (Fig. 8 E).

Direct muscle stimulation was performed in order to measure the maximal isometric strength of the TA muscle in CHC-depleted muscles. At day 18 PI, when no morphological alteration could be observed, CHC depletion induced a 57% decrease in specific maximal force, i.e., absolute maximal force divided by muscle weight (Fig. 8 F). At day 21 PI, CHC depletion had an even more robust effect; muscle depleted of CHC displayed a 74% decrease in specific maximal force (Fig. 8 F). No significant muscle mass loss was observed at both early time-points (Fig. 8 G). These results show that AAV-shCHC efficiently knocks down CHC in vivo with dramatic consequences in terms of muscle fiber homeostasis.

In vivo CHC depletion perturbs α-actinin, γ-actin, and DNM2 distribution

We then sought to analyze the distribution of α-actinin, DNM2, and the costameric actin isoform γ-actin (Sonnemann et al., 2006) in CHC-depleted skeletal muscle by immunocytochemistry. At 18 d PI, the α-actinin labeling was not different from the control, whereas a clear reduction in sarcolemmal clathrin was apparent (Fig. 9 A). However, at day 21 and at further time points (day 23 and day 25), α-actinin and γ-actin both displayed a diffuse distribution compared with control muscle, and areas where α-actinin was no longer adjacent to the sarcolemma were also visible (Fig. 9, B–D). In addition, in control fibers DNM2 presented a strong PM staining and a weak intracellular staining. At day 21 and at further time points (day 23 and day 25) the DNM2 intracellular staining was greatly enhanced (Fig. 9, B and D). We also tested the effect of CHC depletion on the distribution of other costameric proteins such as dystrophin, β-dystroglycan, and caveolin-3 (Fig. S5, B and C). Even though at days 23 and 25 the muscle presented a severe dystrophic phenotype, no change in the distribution of these proteins was noticeable. We therefore conclude that CHC depletion has a strong effect on the localization of intracellular costameric proteins related to the actin cytoskeleton, including γ-actin, actin-associated proteins, and DNM2, without affecting the distribution of dystrophin and PM integral components such as members of the dystrophin-associated glyco-protein complex.

In vivo CHC depletion induces disorganization of the contractile apparatus and detachment between the sarcolemma and myofibrils

We performed electron microscopy analysis of CHC-depleted muscle at day 18 PI (without phenotype upon HE analysis) and at day 25 PI (peak of degeneration). At day 18 PI, focal regions displayed sarcomere abnormalities such as Z-band streaming and disorganization of the contractile apparatus especially in the I-band region (Fig. 10, A–C). It is of interest that these focal sarcomeric disorganizations were usually found adjoining the sarcolemma. In addition, at day 18 PI, occasional detachments of the sarcomeric apparatus from the sarcolemma were visible (Fig. 10, E–G). Both these phenotypes were consistent with the phenotypes produced upon clathrin depletion on isolated fibers. Of note, the T-tubule and sarcoplasmatic reticulum system did not seem affected in the disorganized regions (Fig. 10 D). At day 25 PI, both transverse (Fig. 10, H–J) and longitudinal sections (Fig. 10, K and L) presented a particularly exacerbated detachment phenotype, with fibers displaying large areas of the sarcolemma that were no longer associated with sub-sarcolemmal sarcomeres.

Discussion

In this study, we identify a new role for CHC in costamere formation and maintenance. Our results raise the possibility that CHC, AP2, and DNM2 contribute to the formation of the costameric scaffold that is necessary for anchoring the actin cytoskeleton by recruitment of actin-binding protein Hip1R and actin cross-linking protein α-actinin early during myotube differentiation. Consequently, depletion of CHC, by perturbing the actin cytoskeleton and redistributing α-actinin, has a strong effect on the formation and maintenance of the contractile
Figure 8. **CHC depletion using AAV-shCHC in vivo impairs force and causes muscle degeneration.** (A) Hematoxylin and eosin staining of AAV-CTRL– or AAV-shCHC–injected muscle at day 18, 21, 23, 25, and 38 after virus injection. (B) RT-qPCR of CHC mRNA levels at different time points after AAV-CTRL or shCHC AAV injection (n = 2–9 mice, data are presented as mean ± SD; *, P < 0.05; **, P < 0.01). (C) CHC protein levels at different time points after AAV-CTRL or shCHC AAV injection. The full time-course of CD11b levels, including the D23 and D25 time points shown here, is shown in Fig. S5 A. (D) Quantification of Western blot CHC band intensity (n = 4 mice at day 18, data are presented as mean ± SEM; *, P < 0.05; Mann-Whitney U test). (E) Immunoblot analysis of proteins associated with α-actinin or control immunoprecipitates of TA muscle lysates injected with AAV expressing a control construct or AAV expressing shCHC at 21 d after injection. (F and G) Measures of the specific maximal force (F) and of the muscle weight (G) of isolated TA muscle injected with AAV expressing a control construct or AAV expressing the shCHC construct (n = 3–5 mice) at either 18 or 21 d after injection. Data are presented as means ± SEM; for F: *, P < 0.05; **, P < 0.01.
Clathrin heavy chain is required for sarcomere organization • Vassilopoulos et al.

cultured adipocytes (Bellve et al., 2006) and we observe them on non-adherent regions such as the top or the sides of myotubes (Fig. 2 D and Fig. S4 B). Because one putative role for clathrin-coated membrane domains is to maintain the stable attachment to the substrate, we suggest that clathrin plays the same role at the costamere, which is the muscle-specific adhesion site.

These large clathrin-coated plaques are also endocytically active, and invaginated pits are frequently observed at their edges. The implication of both CHC and DNM2 in focal adhesion turnover has previously been reported (Ezratty et al., 2005, 2009). Therefore, one may hypothesize that this protein complex responsible for formation and maintenance of the costameres is also involved in the turnover of these structures by endocytosis. In addition, we cannot exclude that the defects we are observing both in vitro and in vivo are at least partially due to defective endocytosis of costamere components. However, because (a) plaques in myotubes contain much more polymerized clathrin than would be required to form a single vesicle, (b) adhesion inhibits clathrin-mediated endocytosis (Batchelder and Yarar, 2010), and (c) endocytosis is reduced during differentiation (Kaisto et al., 1999), the defects we are observing apparatus. The possibility that we are observing defective α-actinin trafficking inside the cell toward the PM is improbable because α-actinin is not a membrane-associated protein, does not colocalize with clathrin in intracellular compartments, and because AP1 and AP3 knockdown does not induce an α-actinin redistribution phenotype. In fact, our results clearly point toward a defect in the attachment of α-actinin to the cytoplasmic side of the PM and raise the possibility that clathrin is involved in actin scaffolding, thereby performing a task similar to what has been described for bacterial uptake, adherens junctions, and immune synapses (Bonazzi et al., 2011, 2012; Calabia-Linares et al., 2011). In addition, our results demonstrate a predominant role for AP2 in CHC targeting to the PM of differentiated myotubes.

The assembly of clathrin in plaques has been previously observed in several cell types, including muscle cells, but their physiological importance has proven controversial (De Deyne et al., 1998; Pumplin, 1989; Pumplin and Bloch, 1990; Akisaka et al., 2003; Bellve et al., 2006; Saffarian et al., 2009) and their functional role is still not clear. They were thought to represent artifacts of cell adhesion of cultured cells. However, large clathrin lattices have also been observed in non-adherent floating cultured adipocytes (Bellve et al., 2006) and we observe them on non-adherent regions such as the top or the sides of myotubes (Fig. 2 D and Fig. S4 B). Because one putative role for clathrin-coated membrane domains is to maintain the stable attachment to the substrate, we suggest that clathrin plays the same role at the costamere, which is the muscle-specific adhesion site.

These large clathrin-coated plaques are also endocytically active, and invaginated pits are frequently observed at their edges. The implication of both CHC and DNM2 in focal adhesion turnover has previously been reported (Ezratty et al., 2005, 2009). Therefore, one may hypothesize that this protein complex responsible for formation and maintenance of the costameres is also involved in the turnover of these structures by endocytosis. In addition, we cannot exclude that the defects we are observing both in vitro and in vivo are at least partially due to defective endocytosis of costamere components. However, because (a) plaques in myotubes contain much more polymerized clathrin than would be required to form a single vesicle, (b) adhesion inhibits clathrin-mediated endocytosis (Batchelder and Yarar, 2010), and (c) endocytosis is reduced during differentiation (Kaisto et al., 1999), the defects we are observing...
Figure 10. Sarcomeric disorganization and detachment between sarcolemma and myofibrils upon in vivo CHC depletion. Transmission electron microscopy of longitudinal (A–D, K–L) and transverse (E–J) muscle sections from mice injected with AAV-shCHC constructs at day 18 (A–G) and day 25 PI (H–L). In A–D, the sarcomeric apparatus is disorganized in focal regions adjoining the sarcolemma (within the dotted lines in A) and presents streaming and disassembly of the Z-line. C and D are insets of the respective boxed regions in B. In E–G, small detachments between the sarcolemma and the contractile apparatus are visible at day 18 PI. At day 25 PI, large detachments are seen in both transverse (H–J) and longitudinal orientation (K–L). I is an inset of the boxed region in H; J is an inset of the boxed region in I; L is an inset of the boxed region in K. Arrows in E, H, and L indicate detachments.
are probably not mainly due to endocytosis defects but could relate to the scaffolding role of CHC and DNM2 for the actin cytoskeleton (Schafer et al., 2002).

Our experiments show that these large clathrin-coated structures are intimately associated with the actin cytoskeleton and actin-binding proteins such as α-actinin. Because vinculin and talin were not detected in our communoprecipitation experiments and because vinculin did not localize on clathrin-coated plaques (unpublished data), we believe that the coated domain corresponds to a different entity from classical focal adhesion contacts. The detection of clathrin plaques in situ in adult skeletal muscle is of great interest but remains technically challenging at the moment. It is of interest that costameres have been recurrently described as sub-sarcosomal dense plaques (Chiesi et al., 1981; Pardo et al., 1983a,b; Shear and Bloch, 1985), and therefore it is tempting to speculate that part of the density which characterizes these structures could be attributed to clathrin plaques.

Early during in vivo clathrin depletion appear signs which point toward defects in costamere function. The first phenotype attributed to clathrin depletion is the presence of small detachments between the sarcolemma and the underlying myofibrils. CHC knockdown induces sarcomeric disorganization with streaming of the Z-line, which leads to a drastic and rapid muscle degeneration. Our in vivo experiments confirm the results obtained on differentiated myotubes and again point toward a role for CHC in the formation of stable plasma membrane compartments, which contributes to the attachment of sarcomeric lattices. Our results also point toward differences between three different costamere complexes. The first is centered on the DGC complex, dystrophin, ankyrins, and plectin (Ayalon et al., 2008; Randazzo et al., 2013), the second is centered on integrins, vinculin, α-actinin, and talin (Pardo et al., 1983a,b; Belkin et al., 1986), and the third is centered on integrins, α-actinin, and clathrin plaques (this paper); all three contain branched actin filaments. Also, the strong maximal force-loss seen in the clathrin-depleted muscle before any significant histological sign testifies to the vital role played by clathrin. The fact that more than 40% of the direct maximal force is lost before any change in total muscle mass or before the appearance of histological changes at the photon microscopy level could be attributed to the loss of both longitudinal and lateral force transmission in these myofibrils. This force loss can be a direct consequence of both the large areas where disorganization of sarcomeres is evident and an uncoupling between the sarcolemma and the underlying contractile apparatus. Although the contribution of a trafficking dysfunction cannot be excluded, we believe that clathrin plays a structural role at the plasma membrane and that first appear signs related to this structural function.

Autosomal-dominant CNM is a rare neuromuscular disorder due to mutations in the DNM2 gene (Bitoun et al., 2005). The results reported here and previous data suggest that impairment of CHC and DNM2 function in the formation and maintenance of the contractile apparatus via costamere organization may be relevant in CNM pathophysiology. Similarly to clathrin, DNM2 is mainly localized at the PM and the Z-line, where it colocalizes with α-actinin in both mouse and human skeletal muscle (Cowling et al., 2011), and we show that DNM2 is required for proper α-actinin organization. Recently, a CNM-related DNM2 mutation was associated with an accumulation of electron-dense material located between disorganized myofibrils as well as DNM2 and CHC mislocalization within the atrophied myofiber (Kierdaszuk et al., 2013). In addition, overexpression of DNM2 mutants in mouse skeletal muscle leads to α-actinin structural defects with prominent misalignment of the Z-line in vivo, which may explain at least in part the reduced specific maximal force observed in these mice (Cowling et al., 2011). All these data associated with the undeniable role of DNM2 in regulation of actin cytoskeleton dynamics and focal adhesion maintenance (Ezratty et al., 2005, 2009) highlight a new putative pathomechanism of DNM2-related CNM that merits further investigation.

Overall, our experiments clearly demonstrate the involvement of the CHC, the AP2 adaptor protein, Hip1R, and DNM2 in the formation of structures that, through association with α-actinin and actin filaments, allow the organization of the contractile apparatus in close association with the sarcolemma. The present study sheds light on a long-standing question, namely, the role of clathrin in skeletal muscle sarcomeric structure organization. Altogether, our results highlight an unconventional, novel role for clathrin in striated muscle that may be relevant to muscle physiology and whose dysfunction could be associated with the pathophysiology of CNM linked to DNM2 mutations.

Materials and methods

Antibodies

Anti-CHC mouse monoclonals X22 and TD.1, rabbit polyclonal against clathrin light chains (anti-consensus), and mouse monoclonal AP6 (against α-subunit of AP2) used in this study were produced by Dr. Brodsky's laboratory. The rabbit polyclonal antibody against CHC is from Abcam. For CHC detection in immunohistochemistry, immunocytochemistry, and electron microscopy we used the mouse monoclonal X22 antibody. The rabbit polyclonal was used for double-immunofluorescent labeling. Both X22 and the rabbit polyclonal anti-CHC completely colocalize. For Western blot experiments, both mouse monoclonal TD.1 and rabbit polyclonal [Abcam](http://www.abcam.com) antibodies were used. Other commercial sources of antibodies were as follows: mouse monoclonals against α-actinin 2, smooth-muscle actin, γ-actin, vinculin, and talin (Sigma-Aldrich); mouse monoclonal SA4 against AP3 (subunit DSHB); rabbit polyclonal against AP1 (γ-subunit); rabbit polyclonal anti-DNM2, rabbit polyclonal anti-integrin β3, rabbit polyclonal anti-GAPDH; and rabbit polyclonal anti-CD11b (Abcam); goat polyclonal anti-caveolin3 (Santa Cruz Biotechnology, Inc.); rabbit polyclonal against dystrophin and mouse monoclonal against β-dystroglycan (Novacat); and rabbit polyclonal against Hip1R (EMD Millipore). Secondary antibodies for immunofluorescence were from Life Technologies (Alexa Fluor 488, 568, and 633 conjugates). Secondary antibodies coupled to horseradish peroxidase were from Jackson ImmunoResearch Laboratories, Inc.

Muscle tissue lysate

Lysates of whole tissue were prepared from freshly dissected mouse skeletal muscle. Tissue was homogenized by dounce in lysis buffer (1 mg/3 ml 50 mM Tris-HCl, pH 7.5, 0.15 M NaCl, 1 mM EDTA, 1% NP-40, and 1 protease inhibitor cocktail [1:10 ml buffer; Roche]). Homogenate was centrifuged for 10 min at 14,000 g; and the pellet discarded to obtain a post-nuclear supernatant. Protein concentration of the lysate was determined by Bradford assay (Bio-Rad Laboratories).

Immunoblot analysis

Protein samples were separated by electrophoresis (4–12% bis-acrylamide gel); Life Technologies), then electrophoretically transferred to 0.45-μm nitrocellulose membranes (Life Technologies) and labeled with primary antibodies and secondary antibodies coupled to horseradish peroxidase.

Published May 5, 2014
The presence of proteins in samples was detected using Western Lightning chemiluminescence reagent (GE Healthcare). Quantification was performed using Quantity One software (Bio-Rad Laboratories).

Subcellular fractionation

3T3 fibroblasts, C2C12 myoblasts, and differentiated C2C12 myotubes were homogenized in HES buffer at pH 7.4 (20 mM Hepes, 1 mM EDTA, and 225 mM sucrose) by passing 10x through a 27-gauge needle. Homogenates were centrifuged for 20 min at 19,000 g. The resulting pellets were resuspended in HES buffer, layered on top of a 1.12-M sucrose cushion and centrifuged at 101,000 g for 60 min at 4°C. The PM fraction was collected from the interface of the two solutions. Centrifugation of the initial supernatant (212,000 g) for 60 min at 4°C allowed separation of the intracellular membrane fraction (pellet) and cytosol (supernatant).

Immunoprecipitation

For 3T3 and C2C12 subcellular fractions (PM and cytosol), 250 µl of each fraction was diluted to half using lysis buffer (50 mM Tris-HCl, pH 7.5, 0.15 M NaCl, 1 mM EDTA, 1% v/v NP-40, and 1 protease inhibitor cocktail tablet [1:10 ml buffer; Roche]). Mouse skeletal muscle tissue lysate (post-nuclear supernatant) was diluted to 3 mg/ml in lysis buffer, precleared with 30 µl washed protein G-Sepharose (PGS 4 fast flow; GE Healthcare) per 400 µl of diluted lysate, and incubated with 20 µg of specific antibody overnight (4°C). Then 30 µl washed PGS was added and incubated for 1 h at 4°C. Pelleted PGS was taken up in sample buffer and subjected to electrophoresis and immunoblotting. For all immunoprecipitation experiments, HRP-conjugated rabbit and mouse IgG TrueBlot secondary antibodies (liwishence) were used.

Dissociated fiber cultures

Myofibers were isolated from the dissected FDB muscle of 6-wk-old mice by digestion with collagenase 1a (Worthington Biochemical Corporation) and mechanical dissociation. Isolated fibers were cultured (27°C, 5% CO2) in DMEM with high glucose, 1% horse serum (Gibco), and penicillin-streptomycin. For myofibrous cultures, myoblasts were maintained in tissue culture dishes coated with rat tail collagen in basal medium with 20% fetal bovine serum (FBS), 50 U/ml penicillin, and 50 mg/ml streptomycin.

Mouse myoblast cultures

Primary skeletal muscle cells and C2C12 cells were maintained in tissue culture dishes coated with rat tail collagen in basal medium with 20% fetal bovine serum albumin [BSA]). Sections were incubated with primary antibody overnight (4°C), permeabilized (5 min, 0.5% Triton X-100 in PBS or 10 min, 95% ethanol at RT), fixed (15 min, 4% paraformaldehyde in PBS or 10 min, 95% ethanol at RT), permeabilized (10 min, 0.5% Triton X-100 in PBS) and blocked in blocking solution (5% BSA in PBS with 0.1% Triton X-100, 30 min). Antibody labeling was performed by addition of 200 µl blocking solution with primary or secondary antibodies (1:5-10 µg/ml) and washing with PBS with 0.1% Triton X-100. Samples were mounted in Vectashield containing DAPI (Vector Laboratories).

**Muscle sections, mouse cells, and myofibers from mouse muscles were analyzed by confocal laser scanning microscopy using an inverted operating system (SP2; Leica) equipped with HCK Plan-Apo CS 40×/1.2 NA and 63×/1.40 NA oil immersion objective lenses. Images presented in Figs. 1 A, 5, 6, S3, and S4 were acquired using an upright confocal laser scanning microscope (FV-1000; Olympus) equipped with a UPlanS-Apo 60×/1.35 NA oil immersion objective lens. DAPI, Alexa Fluor 488, and Alexa Fluor 568 fluorescence was sequentially excited using lasers with wavelengths of 405 for DAPI, 488 (Leica) or 473 (Olympus) for Alexa Fluor 488, and 563 nm for Alexa Fluor 568. Z-series from the top to the bottom of fibers were sequentially collected for each channel with a step of 0.9–1 µm between each frame. Imaging was performed at room temperature using Type F immersion oil (Leica). Images (1024 × 1024 pixels) were saved as TIFF files in Olympus FV-1000 software and Leica confocal software, and input levels were adjusted in Adobe Photoshop. Image quantification was performed using ImageJ (National Institute of Health).

Image analysis

Striated surface measurement. The α-actinin striated surface per myotube was quantified by manually drawing a region of interest in ImageJ around the striated or total cell surface in a single Z-stack from the middle of the cell. The striated surface was obtained by performing the ratio between striated and total myotube surface.

α-Actinin aggregate size analysis

The “Analyze Particles” ImageJ plug-in (version 1.46) was used to count intracellular particles on binary confocal images of C2C12 myotubes in a single Z-stack from the middle of the cell and to automatically measure the number and area of these particles.

siRNA constructs

The siRNA against CHC (CHC-1) used for in vitro transfection experiments was synthesized to be directly cloned in PSUper under the control of the H1 promoter. siRNA consisted of a 21-nt sense sequence followed by a 9-nt loop (ITCAGAGAG), a 19-nt reverse sequence, and an RNA pol III terminator (ITTIT). The H1 cassette was then introduced into an AAVV1-based vector between the two ITRs using the blunted Spel and Sall sites on pSUPER-shRNA plasmid and the Xbal site on the pSM22 AAV2 vector backbones, which were type 1 pseudotyped (Génethon).

Virus production and titration

AAV/2/1 pseudotyped vectors were prepared by transfection in 293 cells as described previously (Lam et al., 2005) using the pSMD2-shRNA plasmid, the pX06 plasmid (Génethon) coding for the adenoaviral sequences essential for AAV production, and the pX2coCap plasmid (Génethon) coding for AAV1 capsid. Vector particles were purified on iodixanol gradients and concentrated on Amicon Ultra-15 100K columns (EMD Millipore). The final viral preparations were kept in PBS solution at 4°C. The particle titer (number of viral genomes) was determined by quantitative PCR. Titers for AAV shCHC were 4 × 10^{12} vector genomes (vg)/ml.

In vivo gene transfer

Experiments were performed on adult 8-wk-old C57/B6 mice. Anesthesia was achieved with a mix of 100 mg/kg ketamine and 10 mg/kg xylazine or using isoflurane. Two intramuscular injections (40 µl/TA), 24 h apart of AAV-shCHC, was performed in TA of the right hindlimb; the contralateral muscles were injected using the same procedure with control AAV vector (AAV-CTRL), which expresses the mUSAP protein (murine-secreted embryonic alkaline phosphatase). Mice were sacrificed at different intervals after the injection.
Gene expression analysis
Total RNA was prepared from 400-µm cryostat sections of TA using the Nucleosep RNAII kit (Macherey-Nagel). Complementary DNA generated with the Superscript II Plus reverse transcription kit (Life Technologies) was analyzed by real-time qPCR performed on an Opticon2 system (Bio-Rad Laboratories) using iTaq SyberGreen Supermix with ROX (Bio-Rad Laboratories). In all samples, we quantified transcript of the PO gene encoding muscle acidic ribosomal phosphoprotein M ubiquitously expressed as endogenous RNA control, and each sample was normalized on the basis of its PO content. Primers used for CHC: forward exon 6, 5'-AGGTCAAC-AGAAAGGGACA-3'; reverse exon 7, 5'-CATTCTCAAGGCACTAAGCA-3'. Primers used for PO: forward, 5'-CTCAGAGGATGCAGCA-3'; reverse, 5'-ATGAAGGUCCGTCATGTGG-3'.

Histomorphological and ultrastructural analyses
Samples were frozen in liquid nitrogen-cooled isopentane. Transverse sec-
tions of TA muscle (8-µm thick) were stained with H&E by standard meth-
ods. Light microscopy was performed using an upright microscope (DMR;
Leica) and a 40x/0.8 0.5 HCX Plan apo objective (Leica). Images were
captured using a monochrome camera (DS-Ri1; Nikon) and NIS-Elements
BR software (Nikon). For all imaging, exposure settings were identical be-
tween compared samples and viewed at room temperature.

For morphological electron microscopy, muscles were fixed by intra-
acoustic perfusion with 2% paraformaldehyde and 2% glutaraldehyde in 0.1 M
phosphate buffer (pH 7.4). TA samples were postfixed with 2% OsO4, in
0.1 M phosphate buffer (pH 7.4) for 1 h, then dehydrated in a graded se-
ries of acetone including a 1% uranyl acetate staining step in 70% acetone
and finally embedded in epon resin. For pre-embedding immunogold clath-
rin labeling, mice were fixed with 2% paraformaldehyde and TA longitudi-
nal 100-µm-thick sections were cut with a vibrotome. Then a standard
free-floating immunocytochemical procedure was followed, using 0.1 M
saline phosphate buffer as diluent and rinsing liquids. After pre-incubation
in 5% normal goat serum, 5% BSA, sections were incubated overnight at
4°C in 1:500 anti-clathrin antibody. A further 4-h incubation in ultra-small
permeabilization buffer. After washing in saline phosphate buffer, sections were
incubated overnight at 80°C in 0.1 M phosphate buffer (pH 7.4), then
dehydrated in ethanol and finally embedded in epon resin.

Thin (70 nm) sections were stained with uranyl acetate and lead cit-
rate, and in some cases (Fig. 1 F) a 1% tannic acid (1 min) staining step
preceded uranyl staining. Observations were made on an electron micro-
scope (model CM120; Philips) and images were recorded with a Morada
digital camera (Olympus).

Electron microscopy of unroofed myotubes
Adherent PM from myotubes cultured as described above were prepared
for rapid-freeze, deep-penetration electron microscopy as described previ-
ously (Heuser, 2000). In brief, cells grown on small oriented pieces of glass
cover slips were disrupted by sonication, fixed in paraformaldehyde,
and labeled with anti-clathrin (X22), anti-α-actinin, or anti-β-spectrin and then
18-nm gold-conjugated anti-mouse or anti-rabbit antibody. Each water-
ashed cover slip is mounted on a 3 × 3-mm slab of aldehyde-fixed and
embedded in epon resin. Thin (70 nm) sections were stained with uranyl acetate and lead citrate, and in some cases (Fig. 1 F) a 1% tannic acid (1 min) staining step preceded uranyl staining. Observations were made on an electron microscope (model CM120; Philips) and images were recorded with a Morada digital camera (Olympus).

Contractile properties
The isometric contractile properties of TA muscles were studied in situ
on mice anesthetized with 60 mg/kg pentobarbital. The distal tendon of the
TA muscle was attached to a lever arm of a servomotor system (30SB
DualMode Lever; Aurora Scientific). Muscles were directly stimulated by a bipolar silver electrode using a supramaximal (80 V) square wave pulse of 0.1-ms duration. Absolute maximal force (Fp) was measured during isometric contractions in response to electrical stimulation (frequency of 2.5–150 Hz; train of stimulation of 500 ms). All isometric contraction measurements were made at optimal muscle length (L0) at which Fp was obtained. TA muscles were weighted and specific maximal force (fs) was calculated by dividing Fp by muscle weight.

Statistics and institutional guideline compliance
Statistical analysis was performed using Student’s t test as otherwise
noted. All animal studies were performed in compliance with the French
government guidelines.

Online supplemental material
Fig. S1 shows ultrastructural analysis of tannic acid–stained muscle
sections, anti-CHC–labeled muscle sections, and ultrastructural localization
of clathrin in clathrin-coated pits and plaques of unroofed mouse primary
myotubes. Fig. S2 displays additional images of α-actinin localization and
localization of β5-integrin in clathrin plaques of mouse primary myotubes.
Fig. S3 shows efficiency of siRNA-mediated AP1, AP2, AP3, DNMM2,
and Hip1R depletion, the effect of siRNA-mediated AP2 depletion on
CHC distribution, and localization of Hip1R in control and CHC– or
AP2-depleted myotubes. Fig. S4 compares the effect of siRNA-mediated depletion of CHC, AP1, AP2, Hip1R, and DNMM2 on actin distribution, and character-
sizes localization of Hip1R, AP1, or AP2 in control or CHC– or AP2-depleted
myotubes. Fig. S5 shows that in vivo CHC depletion induces a strong inflammatory
response but has no effect of β3-dystroglycan and dystrophin distribution.

Online supplemental material is available at http://www.jcb.org/cgi/
content/full/jcb.201309096/DC1. Additional data are available in the
JCB DataViewer at http://dx.doi.org/10.1083/jcb.201309096.

We are grateful to Cyriaque Beley and Alexis Mombillotte for help with
AAV constructs and siRNA transfections, respectively; Philip Stahl, Julien Fauré,
Tina Butler-Browne for helpful advices and comments; the Plé–Salpêtrière
Imaging Platform (IPCS) for confocal imaging acquisition facilities; and
the Laboratory of Electron Microscopy Sciences, Department of Cell Biology and
Physiology (Washington University School of Medicine, St. Louis, MO) for
deepetch electron microscopy.

This work was supported by the Institut National de la Santé et de
de la Recherche Médicale (INSERM), Association Institut de Myologie (AIM), Univer-
sité Pierre et Marie Curie-Paris 6 (UPMC), Centre National de la Recherche
Scientifique (CNRS), and grant GM038093 from the National Institutes of
Health (NIH) to F.M. Brodsky. The authors declare no competing financial
interests.

Submitted: 19 September 2013
Accepted: 3 April 2014

Published May 5, 2014

Downloaded from jcb.rupress.org on June 3, 2014

References
sheets on the protoplasmic surface of ventral membranes of osteoclasts
10.1093/jmicro/52.6.535

mechanism for functional organization of dystrophin and dystroglycan.

Batchelder, E.M., and D. Yarar. 2010. Differential requirements for clathrin-
21:3070–3079. http://dx.doi.org/10.1091/mbc.E09-12-1044

10.1016/0014-5793(86)80505-4

Bellve, K.D., D. Leonard, C. Standley, L.M. Lifshitz, R.A. Tuft, A. Hayakawa,
S. Corvera, and K.E. Fogarty. 2006. Plasma membrane domains speci-
ﬁed for clathrin-mediated endocytosis in primary cells. J. Biol. Chem.
281:16139–16146. http://dx.doi.org/10.1074/jbc.M511370200

Bitoun, M., S. Maugenre, P.Y. Jeannet, E. Lacène, X. Ferrer, P. Laforêt, J.J.
Batchelder, E.M., and D. Yarar. 2010. Differential requirements for clathrin-
21:3070–3079. http://dx.doi.org/10.1091/mbc.E09-12-1044

10.1016/0014-5793(86)80505-4

Bellve, K.D., D. Leonard, C. Standley, L.M. Lifshitz, R.A. Tuft, A. Hayakawa,
S. Corvera, and K.E. Fogarty. 2006. Plasma membrane domains speci-
ﬁed for clathrin-mediated endocytosis in primary cells. J. Biol. Chem.
281:16139–16146. http://dx.doi.org/10.1074/jbc.M511370200

of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev.