IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease

Jea-Hyun Baek
Laboratory of Molecular Autoimmune Disease

Rui Zeng
Laboratory of Molecular Autoimmune Disease

Julia Weinmann-Menke
Johannes-Gutenberg University Mainz

M.Todd Valerius
Harvard Stem Cell Institute

Yukihiro Wada
Laboratory of Molecular Autoimmune Disease

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
https://digitalcommons.wustl.edu/open_access_pubs/4658
IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease

Jea-Hyun Baek,¹,² Rui Zeng,¹,² Julia Weinmann-Menke,³ M. Todd Valerius,²,⁴ Yukihiro Wada,¹,² Amrendra K. Ajay,² Marco Colonna,³ and Vicki R. Kelley¹,²

¹Laboratory of Molecular Autoimmune Disease, ²Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA. ³Department of Nephrology & Rheumatology, Johannes-Gutenberg University Mainz, Mainz, Germany. ⁴Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. ⁵Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.

Macrophages (Mø) are integral in ischemia/reperfusion injury–incited (I/R-incited) acute kidney injury (AKI) that leads to fibrosis and chronic kidney disease (CKD). IL-34 and CSF-1 share a receptor (c-FMS), and both cytokines mediate Mø survival and proliferation but also have distinct features. CSF-1 is central to kidney repair and destruction. We tested the hypothesis that IL-34–dependent, Mø-mediated mechanisms promote persistent ischemia-incited AKI that worsens subsequent CKD. In renal I/R, the time-related magnitude of Mø-mediated AKI and subsequent CKD were markedly reduced in IL-34–deficient mice compared with controls. IL-34, c-FMS, and a second IL-34 receptor, protein-tyrosine phosphatase ζ (PTP-ζ) were upregulated in the kidney after I/R. IL-34 was generated by tubular epithelial cells (TECs) and promoted Mø-mediated TEC destruction during AKI that worsened subsequent CKD via 2 distinct mechanisms: enhanced intrarenal Mø proliferation and elevated BM myeloid cell proliferation, which increases circulating monocytes that are drawn into the kidney by chemokines. CSF-1 expression in TECs did not compensate for IL-34 deficiency. In patients, kidney transplants subject to I/R expressed IL-34, c-FMS, and PTP-ζ in TECs during AKI that increased with advancing injury. Moreover, IL-34 expression increased, along with more enduring ischemia in donor kidneys. In conclusion, IL-34-dependent, Mø-mediated, CSF-1 nonredundant mechanisms promote persistent ischemia-incited AKI that worsens subsequent CKD.

Introduction

Myeloid cells, most notably macrophages (Mø), regulate the inflammatory response to injury. Mø are integral in ischemia/reperfusion injury–incited (I/R-incited) acute kidney injury (AKI) that resolves (1–3) or alternatively leads to chronic kidney disease (CKD) (3). As Mø mediate kidney repair and destruction, we reasoned that the principal molecule required for Mø survival, proliferation, and activation — CSF-1 — is central to regulating the fate of the kidney. Our prior studies show that CSF-1 expression is beneficial in kidneys destined to repair (4) and, conversely, harmful in kidneys destined for autoimmune-mediated chronic disease (5–8).

CSF-1 functions by engaging a high-affinity RTK encoded by the FMS proto-oncogene, the CSF-1R (c-FMS, also known as CD115) (9, 10). c-FMS is principally expressed on mononuclear phagocytes, including progenitor cells (11), monoblasts, promonocytes, monocytes (12), Mø, and DCs (13). As FMS null mice developed a more severe phenotype than mice lacking CSF-1 (14), this finding led to the discovery of a second c-FMS ligand, IL-34.

IL-34 and CSF-1 have shared and differing properties. Both cytokines promote the growth and survival of monocytes and formation of Mø colonies from BM (15). However, IL-34 is a dimeric glycoprotein without sequence homology to the secreted glycoprotein CSF-1 isoform or any other known cytokine (16). Moreover, IL-34 and CSF-1 differ in spatiotemporal expression in some adult and developing tissues (15), and they have partially overlapping c-FMS binding domains that may be responsible for dissimilar signal-activation kinetics (17). IL-34, but not CSF-1, is critical in the maintenance of tissue-resident homeostatic Mø, such as Langerhans cells and microglia (18). Moreover, while both IL-34 and CSF-1 signal through c-FMS, IL-34 has a second recently uncovered receptor, PTP-ζ, at least in the brain (19). Although CSF-1-mediated mechanisms during renal inflammation are well documented by our laboratory and others (3, 5, 7, 8, 20–25), the role of IL-34 in inflammation, particularly in the kidney, has not been explored. The central issues are: (i) do IL-34–dependent, Mø-mediated mechanisms augment or thwart AKI and subsequent CKD; (ii) are CSF-1 and IL-34 redundant during renal injury; (iii) do IL-34–dependent, Mø-mediated mechanisms within and/or outside the kidney alter renal injury; (iv) are IL-34–dependent mechanisms responsible for shifting the dominant intrarenal Mø phenotype prior to and/or after I/R; and (v) is intrarenal and systemic IL-34 expression relevant to ischemia-incited human AKI and subsequent CKD? Taken together, we tested the hypothesis that IL-34–dependent, Mø-mediated mechanisms promote persistent ischemia-incited AKI and the subsequent CKD.
Results

Renal ischemic injury incites robust expression of IL-34 and CSF-1 in tubules. Tubules, most notably in the outer medulla, are sensitive to ischemic injury (26). Moreover, the interstitial areas adjacent to ischemic-injured tubules are rich in Mø that often surround and adhere to tubular epithelial cells (TECs) (3). Since IL-34 binds to receptors on Mø and promotes Mø proliferation, we hypothesized that IL-34 is expressed by tubules following ischemic injury. To test this hypothesis, we probed for the locale and magnitude of IL-34 expression in the renal medulla and cortex of B6 mice prior to and after I/R. Using in situ hybridization, we localized ischemia-incited IL-34 expression to tubules (proximal, distal, and collecting ducts) (Figure 1A). We verified this finding using heterozygous IL-34–knockin mice (Il34LacZ/+), in which the IL-34 coding region was replaced by the gene coding β-galactosidase (data not shown) (18). By comparison, CSF-1 reporter mice expressing β-galactosidase (CSF-1 reporter mice) were stained for β-galactosidase activity (X-gal). Representative photomicrographs (n = 5). Original magnification, ×2.5; inset, ×20. Dotted lines indicate the junction between the cortex (C) and the medulla (M). (B and C) We detected expression of intrarenal IL-34 transcripts and protein using qPCR (n = 5/group) (B) and ELISA (n = 4–11/group) (C), respectively. (D) Il34 transcripts in the cortex and medulla were evaluated using qPCR (n = 5/group). *P < 0.01, **P < 0.001. Statistics analyzed using the Mann-Whitney U test. Values are means ± SEM.

IL-34 is increased in the kidney after I/R. In each figure, expression is analyzed before and after I/R. (A) IL-34 expression in B6 TECs identified using in situ hybridization (ISH), and CSF-1 using a CSF-1 reporter mouse (lacZ under control of Csf1 promoter and first intron) stained for β-galactosidase activity (X-gal). Representative photomicrographs (n = 5). Original magnification, ×2.5; inset, ×20. Dotted lines indicate the junction between the cortex (C) and the medulla (M). (B and C) We detected expression of intrarenal IL-34 transcripts and protein using qPCR (n = 5/group) (B) and ELISA (n = 4–11/group) (C), respectively. (D) Il34 transcripts in the cortex and medulla were evaluated using qPCR (n = 5/group). *P < 0.01. **P < 0.001. Statistics analyzed using the Mann-Whitney U test. Values are means ± SEM.
TECs with either TNFα or IL-34 and analyzed Ptprz1 expression using qPCR. Ptprz1 transcripts are upregulated in response to either stimulus (Supplemental Figure 1B). While Mø ubiquitously expressed c-FMS, it is unlikely that intrarenal Mø express PTP-ζ, as WT BM-derived Mø (BMMø) polarized toward M1 and M2 phenotypes, representing opposite ends of the activation spectrum, do not express PTP-ζ in vitro. (Supplemental Figure 1C). Thus, intrarenal c-FMS and PTP-ζ have overlapping and distinct expression after I/R.

IL-34 mediates loss of tubules evident by the chronic phase after I/R. To determine if IL-34 is central to promoting renal disease, we compared pathology in Il34–/– and WT mice in AKI and subsequent CKD after I/R (Figure 3A). Kidney weight and size is more dramatically decreased in WT mice compared with Il34–/– mice at d20 and d37 after I/R (Figure 3B). As escalating inflammation drives renal injury, we hypothesized that ischemia-incited renal tubule IL-34 expression promotes leukocyte accumulation in the interstitium, leading to tubule destruction. We detected more tubular pathology (atrophy) and leukocytes in the interstitium in WT compared with Il34–/– mice after I/R (Figure 3C). To more fully compare the loss of tubules in Il34+/+ and WT mice after I/R, we used lotus tetragonolobus lectin (LTL) to detect proximal tubules and dolichos biflorus agglutinin (DBA) to detect collecting ducts. By the chronic phase after I/R, there are far fewer LTL+ and DBA+ cells in WT compared with Il34+/− kidneys (d37, Figure 3D). Similar findings appeared at d20 (data not shown). Thus, ischemia-incited IL-34–dependent mechanisms mediate loss of tubules evident during the chronic phase after I/R.

IL-34 mediates tubular injury during AKI. To determine if intrarenal IL-34 fosters acute tubule injury leading to the chronic loss of tubules, we compared the expression of kidney injury molecule 1 (KIM-1) in WT and Il34–/– mice after I/R. KIM-1 protein (Figure 4A) and transcripts (data not shown) are more robustly expressed in WT compared with Il34–/– TECs during the acute phase after I/R. This suggests that IL-34 expression is central to the initiation of tubule injury. Consistent with IL-34 driving AKI that is reflected in subsequent CKD, serum levels of neutrophil gelatinase–associated lipocalin (NGAL), a reliable marker of AKI progressing to CKD (27) (Figure 4B), and albuminuria (Figure 4C) are higher in WT compared with Il34+/− mice at d3 and d20 after I/R. Moreover, we detected more renal fibrosis in WT compared with Il34+/− mice during the chronic phase after I/R. Collagen protein was detected using Picrosirius red staining (Figure 4D), and collagen 1 transcripts were detected using qPCR (data not shown). Thus, ischemia-incited IL-34 mediates leukocyte-rich inflammation and tubule injury during AKI and subsequent worsening of CKD.

IL-34 promotes intrarenal myeloid cell accumulation after renal ischemic injury. Because myeloid cells, and in particular Møs, are integral to renal ischemic injury and repair (3), we hypothesized that IL-34 promotes myeloid-mediated renal injury. As anticipated, the accumulation of intrarenal neutrophils (Ly6G+) precedes Mo (F4/80+), and declines rapidly as Mø ascend and remain prominent in WT mice after I/R (Figure 5A). We detected more intrarenal neutrophils and Mø in WT compared with Il34+/− during the acute and chronic phase after I/R (Figure 5A). Consistent with the enhanced magnitude of IL-34 expression, neutrophil and Mø accumulation were more abundant in the medulla than cortex (Figure 5A). To identify the intrarenal leukocyte populations in ischemia-incited renal injury, we used flow cytometry (Figure 5B). We verified that fewer intrarenal myeloid cells (CD45+CD11b+) are in Il34+/− compared with WT.
To determine if IL-34 generated from ischemic TECs directly fosters Mø proliferation, we used several in vitro approaches. We compared Mø (WT BMMø) proliferation after stimulation with supernatant from primary cultured hypoxic Il34–/– and WT TECs (Figure 7A). We detected greater Mø proliferation after stimulation with hypoxic WT compared with Il34–/– TEC supernatants, as assessed by the MTT assay (Figure 7B). Therefore, hypoxia-incited IL-34 expression by TECs enhances Mø proliferation. Mø stimulated with media alone or containing 20% L929 supernatant plus 10% FCS served as negative and positive controls, respectively. Note, we did not detect a difference in viability of hypoxic WT and Il34–/– TECs or normoxic WT and Il34–/– TECs, using trypan blue exclusion and propidium iodide (PI) staining (Supplemental Figure 2A). Thus, Mø-stimulating supernatants are generated from equivalent numbers of TECs. As the MTT assay is an index of both proliferation and viability, to verify our proliferation findings, we repeated the above experiment using BrdU incorporation in place of MTT. Similarly, the number of BrdU+ Mø rises after stimulation with hypoxic WT TEC supernatant (Supplemental Figure 2B). Moreover, decreasing the concentration of hypoxic supernatant reduces the magnitude of BrdU+ Mø (Supplemental Figure 2B). We verified that IL-34 in TEC supernatant enhances Mø proliferation by adding recombinant IL-34 (rIL-34) to the stimulating hypoxic Il34–/– TEC supernatant. Adding increasing...
concentrations of rIL-34 restores Mø proliferation, in a step-wise manner, to WT levels and beyond (MTT assay, Figure 7C). Thus, IL-34 released from hypoxic TEC directly induces Mø proliferation.

Are IL-34 and CSF-1 released into the supernatant of hypoxic TECs both responsible for driving Mø proliferation? IL-34 and CSF-1 (protein) are upregulated in the supernatant of hypoxic WT TEC (Figure 7E). Anti–IL-34 (neutralizing) Ab blockade of IL-34 in supernatants from hypoxic WT TECs partially reduces Mø proliferation (Figure 7D). Similarly, substituting anti–CSF-1 Ab in place of anti–IL-34 Ab also partially reduces Mø proliferation. Moreover, Mø proliferation is reduced to baseline (media alone) levels by blocking CSF-1 in IL34−/− hypoxic TEC supernatants (Figure 7D). Thus, hypoxic TEC release IL-34 and CSF-1, which additively are responsible for driving Mø proliferation.

Does CSF-1 compensate for the absence of IL-34 in the ischemic kidney? We found that CSF-1 protein does not increase in the supernatant of either hypoxic or TNFα-stimulated IL34−/− compared with WT TECs (Figure 7F). We found similar results analyzing CSF-1 protein in TNFα-stimulated TEC homogenates from IL34−/− compared with WT mice (data not shown). This is consistent with equivalent expression of Csf1 transcripts in TNFα-stimulated IL34−/− compared with WT TECs (Supplemental Figure 2D). Thus, CSF-1 does not compensate for the absence of IL-34 in ischemic-injured TECs.

IL-34 stimulates BM myeloid cell proliferation and elevates circulating myeloid cells that are recruited to the kidney after I/R. Intrarenal IL-34 proliferation alone may not account for all IL-34–dependent Mø accumulation in the kidney. In this regard, we detected an elevation of circulating IL-34 after I/R (Figure 8A). Moreover, IL-34 contributes to myeloid cell development and thereby may increase circulating monocytes (15). Therefore, we tested the hypothesis that elevated systemic IL-34 increases the number of circulating myeloid cells that are recruited to the kidney. Using flow cytometry (Figure 8B), we detected an increase in myeloid cells (Figure 8C), neutrophils (Ly6G+Ly6Cint, Figure 8D), and inflammatory/migratory monocytes (CD45+CD11b+Ly6G−Ly6Cint, Figure 8E) in circulation during the acute phase after I/R. Thus, IL-34 promotes an increase of circulating neutrophils and monocytes during ischemia-incited AKI.

To determine whether systemic IL-34 promotes the rise in circulating myeloid cells, we tested the hypothesis that IL-34 mediates myeloid cell proliferation in the BM that subsequently enters the circulation. To test this hypothesis, we analyzed myeloid cell BrdU incorporation in BM, blood, and kidney before and after I/R (Figure 8F). BrdU+ BM myeloid progenitor cells (SSCloCD45+CD11b−Ly6G−) are increased in WT compared with Il34−/− mice during the acute phase after I/R (Figure 8F, BM). Moreover, we detected elevated circulating BrdU+ myeloid cells in WT compared with IL34−/− BM during the acute phase after I/R (Figure 8F, Circulation, left). The increase in circulating myeloid cells results from a rise in both neutrophils (Figure 8F, Circulation, middle) and monocytes (Figure 8F, Circulation, right) in WT compared with IL34−/− mice. Thus, IL-34 promotes BM myeloid progenitor proliferation, leading to a rise of circulating monocytes and neutrophils after I/R.

To explore whether a rise in myeloid cells in the circulation leads to a greater abundance of myeloid cells in the kidney, we adoptively transferred equal numbers of CSF-1 receptor-labeled BM cells (eGFP+ BM cells) into IL34−/− and WT mice (3 hours prior...
to sacrifice) after I/R. We found similar eGFP+ BM cells in the circulation, but we found more eGFP+ cells in the kidney in WT than Il34–/– mice (Figure 9A). Thus, IL-34 mediates the number of eGFP+ (myeloid cells) recruited to the inflamed kidney. Moreover, we followed the same protocol but injected half the number of eGFP-labeled BM cells into Il34–/– mice. We found that the number of labeled cells injected into the circulation is proportional to the number in the kidney (Figure 9A). Thus, increasing myeloid cells in the circulation leads to more myeloid cell trafficking into the inflamed kidney.

IL-34 mediates a rise in intrarenal chemokines that recruit monocytes to the inflamed kidney. Is IL-34 directly or indirectly responsible for enhancing monocyte recruitment to the kidney? To test whether IL-34 directly recruits myeloid cells, we used a transwell system; the upper and lower chambers are separated by a porous membrane (Figure 9B). We determined whether stimulated TECs expressing IL-34 (lower chamber) recruits WT BMMø (upper chamber). To avoid IL-34–mediated Mø proliferation (18- to 22-hour turnover rate) (28), we examined recruitment at 3 hours and 6 hours after BMMø are seeded into the upper chamber. Blocking
MCP-1, a well-established Mø chemoattractant, reduced BMMø migration at 6 hours (Figure 9B) and 3 hours (data not shown) after BMMø are seeded into the upper chamber in a dose-responsive manner. In contrast, blocking IL-34 did not alter BMMø migration at 6 hours (Figure 9B) and 3 hours (data not shown) using the same dose range as for MCP-1. This suggests that IL-34 generated by TECs is not directly responsible for Mø recruitment.

We next tested the hypothesis that IL-34 indirectly recruits myeloid cells by increasing intrarenal chemokines. We detected more intrarenal chemokines (MCP-1, also known as CCL2; MIP-1α, also known as CCL3; and CX3CL1, also known as fractalkine), known to recruit Mø, in WT compared with Il34–/– mice after I/R (Figure 10A). The elevation in chemokines is not limited to those recruiting Mø, as intrarenal IP-10, also known as CXCL10, (recruits T cells) is increased and T cells are more abundant in WT compared with Il34–/– mice at d5 and d20 after I/R (Figure 10A and Supplemental Figure 3).

To determine whether IL-34 directly stimulates intrarenal chemokine expression, we stimulated TECs with mouse IL-34 in vitro. Stimulating TEC with TNFα (25 ng/ml) readily amplifies chemokine expression (Figure 10B). In contrast, stimulating TECs with varying doses of IL-34 (up to 10 times more than TNFα) does not induce chemokine expression (Figure 10B). This suggests that IL-34 does not directly induce chemokine expression in TECs.

To determine whether chemokines are primarily responsible for recruiting Mø into the inflamed kidney, we blocked G protein–coupled signaling, which blocks chemokine receptors, in BM cells from MacGreen mice (eGFP reporter for c-FMS). For this purpose, we incubated MacGreen BM cells with pertussis toxin (PTx) prior to injecting these cells into WT mice after I/R (d1) (Figure 10C). MacGreen BM cells incubated with heat-inactivated PTx served as a negative control. The viability of MacGreen BM cells treated with PTx or heat-inactivated PTx is 98%–99% (PI staining, data not shown). Blocking G protein–coupled signaling in eGFP+ WT BM cells nearly eliminates all recruitment of these cells into the inflamed kidney (Figure 10C). Taken together, IL-34 mediates the proliferation of BM cells that, in turn, enter the circulation, thereby increasing circulating myeloid cells that are recruited to the inflamed kidney. Moreover, our data suggest that IL-34 indirectly mediates a rise in intrarenal chemokines that recruits myeloid cells into the kidney after I/R. In conclusion, both intrarenal and systemic mechanisms regulate IL-34–dependent accumulation of myeloid cells in the inflamed kidney.

The processes of maintaining kidney-resident Mø and skewing intrarenal-incipit Mø phenotypes after ischemia are not dependent on IL-34. Tissue-resident Mø (Ly6C−) are seeded during early development and maintained locally through homeostatic proliferation, independent of monocytes. By comparison, Mø (Ly6C+) derived from monocytes are recruited into inflamed tissues, where they multiply and exert cyto-destructive or cyto-protective functions (28). Recent studies indicate that IL-34 is required to maintain homeostatic cyto-protective tissue-resident Mø (Ly6C+) in some tissues, such as the brain and skin (18, 29). Thus, we determined
Broadly, Mø responding to local signals are divided into functional states at opposite ends of the activation spectrum (referred to as M1 and M2). Simplistically, M1 Mø promote injury, while M2 are reparative (30–32). We tested the hypothesis that an IL-34–dependent shift in Mø phenotypes promotes AKI. We found a predominance of M1-like Mø (CD45+Ly6G–F4/80+NOS-2+TNFα+) during the acute phase that shift to the M2 (CD45+Ly6G–F4/80+Arginase-1+Dectin-1+CD206+) phenotype during the chronic phase in WT mice after I/R (Supplemental Figure 5). The predominance of M1-like Mø during the acute phase and M2-like Mø (CD45+Ly6G–F4/80+Arginase-1+Dectin-1+CD206+) during the chronic phase is more pronounced in WT compared with Il34–/– mice. However, IL-34 does not skew intrarenal Mø toward either an M1-like or M2-like phenotype, as the frequency of these phenotypes are similar in WT and Il34–/– mice after I/R (Supplemental Figure 5).

Thus, IL-34 expression does not shift intrarenal Mø phenotypes toward either an M1 or M2 phenotype, but rather expands the accumulation of Mø phenotypes.

whether IL-34 is required for the maintenance of tissue-resident Mø in the kidney. We detected equivalent numbers of Ly6C– Mø (CD45+Ly6C–CD11b+Ly6G–F4/80+) in Il34–/– compared with WT kidneys (nonmanipulated) (Supplemental Figure 4C) and in the circulation (Supplemental Figure 4B). Moreover, the absence of IL-34 does not alter kidney development, as Il34–/– and WT kidneys are the same size (kidney/body weight, Supplemental Figure 4A) and appear similar by histology (data not shown). Thus, IL-34 is not required for kidney-resident Mø homeostasis. Once in the inflamed kidney, Ly6C+ Mø may either reflect an expansion of tissue-resident Mø or invading monocytes that switch from Ly6C+ to Ly6C+. We detect equivalent frequencies of Ly6C+ and Ly6C+ Mø in WT and Il34–/– kidneys, and we detect more Ly6C+ and Ly6C+ Mø in WT compared with Il34–/– kidneys after I/R (Supplemental Figure 4). While there are far more Ly6C– than Ly6C+ Mø in both WT and Il34–/– kidneys, it remains unclear whether this reflects an expansion of tissue-resident or invading monocytes. Taken together, IL-34 expression does not skew Mø toward either Ly6C+ or Ly6C– phenotype in the kidney prior to or after I/R.

Figure 7. IL-34 generated from hypoxic TECs directly induces Mø proliferation. In vitro Mø proliferation: (A) Scheme. (B) Cultured WT BMMø stimulated (24 hours) with supernatants of Il34–/– and WT TECs after hypoxia or normoxic (24 hours) (MTT assay) (n = 3–4/group). (C) To rescue IL-34 in Il34–/– TEC supernatant, rIL-34 is added to TEC supernatant prior to stimulating WT BMMø (MTT assay) (n = 3–4/group). (D) To block IL-34 or CSF-1 in WT TEC supernatant, anti–IL-34 or anti–CSF-1 Ab, respectively, are added to the TEC supernatant prior to stimulating WT BMMø (n = 3–4/group). (E) IL-34 and CSF-1 protein in supernatant of hypoxia and normoxic (24 hours) TECs evaluated by ELISA (n = 3–5/group). Dotted line represents Il34–/– hypoxic supernatant control (n = 2). (F) CSF-1 protein in the supernatant of TNFα (25 ng/ml) stimulated and hypoxic Il34–/– and WT TECs. CSF-1 control is serum from mice injected i.p. with LPS (25 μg) (n = 3–5/group). Statistics analyzed using the Mann-Whitney U test. *P ≤ 0.05, **P < 0.01. Values are means ± SEM.
IL-34 and IL-34 receptors are upregulated in TECs after I/R in human kidneys. IL-34 is upregulated in ischemia-incited human inflamed kidneys. Because I/R injury is an inevitable consequence of the kidney transplant procedure and prolonged ischemia leads to poorer graft survival, we probed for IL-34 in the engrafted kidney during the first 6 months after transplantation (acute phase) (Supplemental Table 1A). IL-34 is upregulated in the engrafted kidney compared with the donor kidney (living and deceased after reperfusion) and rises even higher during acute kidney rejection (Figure 11A). In mice, after I/R, IL-34 is expressed predominately by TECs (Figure 1A), and IL-34 mediates the survival and proliferation of Mø and the accumulation of neutrophils. Therefore, we tested the hypothesis that intrarenal IL-34 expression promotes the accumulation of intrarenal myeloid cells. Consistent with the level of IL-34 expression in TECs, we detected far more Mø (CD68+) and neutrophils (Ly6G+) in IL-34 and IL-34 receptors are upregulated in TECs after I/R in human kidneys. IL-34 is upregulated in ischemia-incited human inflamed kidneys. Because I/R injury is an inevitable consequence of the kidney transplant procedure and prolonged ischemia leads to poorer graft survival, we probed for IL-34 in the engrafted kidney during the first 6 months after transplantation (acute phase) (Supplemental Table 1A). IL-34 is upregulated in the engrafted kidney compared with the donor kidney (living and deceased after reperfusion) and rises even higher during acute kidney rejection (Figure 11A). In mice, after I/R, IL-34 is expressed predominately by TECs (Figure 1A), and IL-34 mediates the survival and proliferation of Mø and the accumulation of neutrophils. Therefore, we tested the hypothesis that intrarenal IL-34 expression promotes the accumulation of intrarenal myeloid cells. Consistent with the level of IL-34 expression in TECs, we detected far more Mø (CD68+) and neutrophils (Ly6G+) in
The renal interstitium in engrafted compared with donor kidneys that are even more pronounced during kidney transplant rejection (Supplemental Figure 6). Note, Mø are far more abundant (2 times) than neutrophils in the transplanted kidneys. Thus, ischemic injury in human kidneys upregulates IL-34 in TECs and simultaneously increases renal interstitial Mø and neutrophils. Accompanying IL-34 expression by TECs, we detected a pronounced rise in serum IL-34 during rejection compared with engraftment and healthy controls (Figure 11B). IL-34 serum levels reflected intrarenal IL-34 expression, as serum and TEC-derived IL-34 correlate with the magnitude of IL-34 expression in rejected and engrafted kidney transplants (Figure 11C).

To further explore the relationship of I/R and IL-34 in patients, we compared deceased donor kidney (more ischemic) with living donor kidneys (less ischemic) prior to and after reperfusion (Supplemental Table 1B). IL-34 expression is higher in human deceased and living donor kidneys after reperfusion compared with before reperfusion (Figure 12A). Moreover, IL-34 expression is elevated in deceased compared with living donor kidneys both before and after reperfusion (Figure 12A). This suggests that intrarenal IL-34 expression rises with increasing renal ischemia in patients receiving a kidney transplant.

To determine whether the IL-34 receptors are upregulated along with IL-34, we probed for PTP-ζ and c-FMS expression in the same human kidney transplants (Figure 11A). PTP-ζ and c-FMS expression are both upregulated in kidney transplants (Figure 11A). Moreover, PTP-ζ and c-FMS are expressed by TECs and in some cells in the interstitium (Figure 11A). As PTP-ζ is more abundant in the chronic compared with acute phase after I/R, we compared PTP-ζ in patients with acute and chronic kidney transplant rejection. Similar to our findings in mice, PTP-ζ is more abundant in chronic compared with acute kidney transplant rejection (Figure 12B). Since IL-34 and IL-34–receptor expression in mouse and human kidneys are similarly upregulated within ischemia-incited renal injury, and IL-34 promotes ischemia-incited AKI, we speculate that IL-34 mediates human renal injury.

Discussion

We report here the finding that IL-34 promotes Mø-mediated persistent ischemia-incited AKI, worsening subsequent CKD. IL-34 expression is upregulated in TECs during the acute phase and remains elevated during the chronic phase after I/R, and it is maximal in the medulla, the site most sensitive to I/R injury. By comparison, the receptors for IL-34, c-FMS and PTP-ζ, are maximally expressed in the chronic phase after I/R. Intrarenal IL-34 promotes Mø-mediated TEC destruction during the acute and, subsequently, the chronic phase after ischemic injury. Intrarenal IL-34 fosters Mø accumulation via 2 distinct mechanisms: enhancing Mø proliferation locally in the kidney and releasing IL-34 into the circulation, leading to a rise in BM myeloid cell proliferation that subsequently enter the circulation and increase circulating monocytes. The IL-34–dependent rise in circulating myeloid cells provides a larger pool of myeloid cells available for recruitment to the inflamed kidney. IL-34 does not directly recruit monocytes, but rather increases intrarenal inflammation and thereby chemokines that draw circulating myeloid cells to the inflamed kidney.
I/R injury is an inevitable consequence of the kidney transplantation procedure. We detected increased IL-34 expression by TECs in human transplanted kidneys. Moreover, IL-34 is increased in the serum of recipients with transplanted kidneys and rises higher with advancing renal inflammation. CSF-1 does not compensate for the absence of IL-34. Thus, targeting IL-34 is a potential therapeutic to suppress AKI and subsequent CKD. Further detailed studies are required to determine whether targeting IL-34 during the chronic phase after I/R alone suppresses CKD.

While IL-34 and CSF-1 share a common receptor and partially overlap in functions, the list of their distinct actions is rapidly expanding (34-37). The roles of IL-34 and CSF-1 clearly differ during growth and development. IL-34 and CSF-1 are the principle molecules released from TECs that mediate intrarenal Mø proliferation, as eliminating intrarenal fibrosis. Moreover, IL-34 and CSF-1 are overexpressed in chronic kidney diseases with multiple etiologies.

IL-34 and CSF-1 are the principle molecules released from TECs that mediate intrarenal Mø proliferation, as eliminating both of these molecules, but not either alone, reduces Mø proliferation to baseline levels. Moreover, CSF-1 does not compensate for the lack of IL-34 during inflammation, as ischemia-incited renal injury is diminished in Il34−/− mice and stimulated IL34−/− and WT TEC express similar levels of CSF-1. This is consistent with the absence of a compensatory increase in IL34 mRNA expression in Csf1op/op mice in several noninflamed tissues (ear, skeletal muscle, liver, salivary gland, and spleen) (15). Moreover, elevated intrarenal IL-34 is not restricted to I/R injury. IL-34 protein and transcripts are abundantly upregulated in MRL-Fasop mice with spontaneous CKD (lupus nephritis, unpublished data), and intrarenal Il34 transcripts are elevated in the kidney of other models with lupus nephritis (44). These findings have seeded studies to clarify whether IL-34 is a potential therapeutic target for chronic kidney diseases with multiple etiologies.
Are the actions of IL-34 and CSF-1 similar or distinct in ischemia-incited renal injury? While ischemia-induced IL-34 drives AKI and thereby worsens subsequent CKD, our prior studies (4) and others (24, 25) indicate that CSF-1 hastens AKI repair after I/R. However, CSF-1 mediates repair in AKI and conversely escalates spontaneous (MRL-Fas⁺ lupus nephritis) (3, 5, 7, 8, 20) and induced (unilateral ureteral obstruction) (22, 23) CKD. This divergent role of CSF-1 is analogous to epidermal growth-factor receptor signaling in AKI and CKD (45, 46). One caveat concerning the distinct actions of IL-34 and CSF-1 in AKI relates to comparing differing models/methods (CSF-1–transgenic, CSF-1–injected, and CSF-1–deficient osteopetrotic Csf1op/op mice, versus Il34^{−/−} mice) and experimental I/R protocols. Nevertheless, our data support the concept that the roles of IL-34 and CSF-1 are dissimilar in renal injury, a finding consistent with nonredundant features of these c-FMS ligands.

Unlike CSF-1, IL-34 does not directly recruit monocytes into the inflamed kidney (7). Our data suggest that intrarenal IL-34 incites inflammation and the expression of chemokines, such as MCP-1, that recruit monocytes into the inflamed kidney (47). This is consistent with markedly weak IL-34–mediated direct migration of the mouse monocyte/Mø cell line (J774A.1) in vitro (17). Moreover, IL-34–dependent elevated intrarenal inflammation is a plausible explanation for the rise in neutrophils in the circulation and kidney in WT compared with Il34^{−/−} mice (48). Taken together, IL-34 directly and indirectly mediates AKI, worsening subsequent CKD.

IL-34 fosters homeostatic, protective, tissue-resident Mø in select tissues. Mø are divided according to their origin. Tissue-resident Mø (Ly6C[−]) are seeded during early development; are maintained locally through homeostatic proliferation, independent of monocytes; patrol peripheral tissues; and exert a broad range of immunoregulatory, cyto-protective functions (28). By comparison, monocyte-derived Mø (Ly6C⁺) are recruited into inflamed tissues, where they multiply and exert cyto-destructive or cyto-protective functions (28). Initial in vitro evidence suggested that IL-34 promotes the expansion of cyto-protective Mø in tissues, as IL-34–stimulated Mø express an immunosuppressive cytokine.
profile (IL-10α, IL-12γ), reduce Mø mediated T cell stimulation and proliferation, and skew human monocytes toward a M2 phenotype (49). Moreover, IL-34 is required for the maintenance of homeo-static cyto-protective tissue-resident Mø (Ly6C–) in brain and skin (18, 29). We now report that IL-34 does not maintain kidney-resident Mø, as the number and frequency of Ly6C– is similar in non-manipulated Il34−/− and WT kidneys. Thus, IL-34 is not required to maintain homeostatic cyto-protective Mø in the resting kidney. IL-34 mediates intrarenal Mø accumulation but does not shift phenotypes during AKI and subsequent CKD. Several previous studies indicate that M1-like Mø drive injury and M2-like Mø mediate repair during renal inflammation (1, 3, 25). Our findings are consistent with a rise in IL-34-dependent M1-like Mø mediating more severe AKI. Although the abundance of M2-like Mø in ischemia-incited CKD is seemingly at odds with some prior studies in renal inflammation, there are possible explanations. Growing evidence shows M2-like Mø are the dominant phenotype in fibrotic lesions of CKD of many etiologies. For example, the abundance of M2-like Mø in human and mouse polycystic kidney disease (PKD), contribute to the progression of renal disease by promoting cyst growth and fibrosis (50). Similarly, M2-like Mø proliferation and infiltration is associated with tubular injury and progression of fibrosis during inflammation in human kidney transplant allografts (51, 52). Moreover, insufficient renal epithelial healing in mice promotes an expansion of M2-like Mø that accelerates fibrogenesis (reviewed in ref. 53). These findings in kidney disease are in keeping with the profibrotic functions of M2-like Mø in the liver (54). As we find a predominance of M2-like Mø-expressing markers (CD 206+, Arginase-1+, Dectin-1+) linked to fibrosis (55–57) in fibrotic kidneys after I/R, our findings are consistent with the concept that these intrarenal Mø are profibrotic. Since fibrosis is a protective response to tissue injury, M2-like Mø may mediate both repair and fibrosis. Moreover, when renal injury is severe, as in our study, fibrosis results in substantial loss of tissue and CKD. Thus, it is not inconsistent that some have found intrarenal M2-like Mø during renal repair, while we found M2-like Mø in fibrotic kidneys during CKD. To add to the complexity of defining the roles of M2-like Mø, activated Mø phenotypes extend far beyond the simplistic M1 and M2 paradigm, making it challenging to compare Mø phenotypes and functions in differing experimental settings, even within the kidney. In conclusion, our findings show IL-34 increases intrarenal Mø but does not skew the Mø phenotype (within the context of the M1 and M2 markers we explored) during AKI and subsequent CKD.

We wish to highlight the finding that IL-34 and IL-34 receptors are upregulated in ischemia-incited human inflamed kidneys. As IL-34 and IL-34 receptor expression in mouse and human kidneys are similarly upregulated, we speculate that IL-34 in transplanted kidneys may mediate rejection and other forms of renal injury. In conclusion, our mouse experimental data and human data suggest that targeting IL-34 in the kidney and circulation is likely a potential therapeutic strategy to suppress AKI and subsequent CKD.

Methods

Mice. We purchased C57Bl/6 (B6) mice from The Jackson Laboratory and Harlan. Transgenic Tg(Fms-EGFP) mice that express eGFP under the control of Fms promoter and first intron (MacGreen), were provided by D. Hume (Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom). We backcrossed MacGreen mice onto the B6 background (MacGreen;B6) (4, 23). To generate IL-34 null LacZ+ (Il34−/−;B6) mice, B6 mice were deleted of Il34 exons 3–5 and intercrossed with Il34Δ5/Δ5 offspring, as previously described (18). Transgenic mice expressing lacZ under the control of Csf1 promoter and the first intron (Tg(N9[Csf1-Z]Ers7+/+)) (58) were provided by E.R. Stanley (Albert Einstein College of Medicine, New York, New York, USA) and backcrossed to B6 in our facility at Harvard Medical School, Boston, Massachusetts, USA. IL-34 is required for the development of Langerhans cells (18); thus, in addition to using PCR to detect the deletion of Il34, we probed for the loss of Langerhans cells in the epidermis of the ear (59). All breeding housing and colony housing was done at Harvard Medical School.

I/R. We anesthetized female mice (6 weeks of age) and exposed the left kidney through a flank incision. We induced ischemia by clamping the renal pedicle with nontraumatic microaneurysm clamps (Roboz Surgical Instrument Co.). Clamps were removed after 45 minutes. Body temperature was controlled at 36.8°C–37.2°C throughout the procedure.

In situ hybridization. The digoxigenin-labeled (DIG-labeled) anti-sense oligonucleotide probe for mouse IL-34 was synthesized by in vitro transcription using T7 RNA polymerase and Dig Labeling Mix (Roche Applied Science) from cDNA template amplified from plasmid IL-34–pBS-SK (a gift from E.R. Stanley), and purified with Micro Bio-
Spin 30 Columns (Bio-Rad). Kidneys were fixed in 4% paraformaldehyde overnight, immersed in 30% sucrose/PBS overnight at 4°C, and then embedded and cryostat-sectioned at 20 μm. The kidney sections were prepared and processed for in situ hybridization, as previously described (60). After development, slides were fixed in 4% PFA overnight and dried, and cover slips were mounted for imaging.

β-Galactosidase. β-Galactosidase staining was performed, as previously described (61). Kidneys were fixed in 4% paraformaldehyde for 3 hours at 4°C, embedded and sectioned at 20-μm thick sections. Cryosections were stained with X-gal (catalog X4281C10; Gold Biotechnology) overnight at 37°C and subsequently counterstained with Nuclear Fast Red (catalog N3020; Sigma-Aldrich).

Immunoblotting. Kidney tissues were homogenized in RIPA buffer, and 25 μg total protein was used for immunoblotting, as previously described (62). Blots were probed with mouse monoclonal PTP-ζ Ab (3F8; Developmental Studies Hybridoma Bank, University of Iowa, Iowa City, Iowa, USA). Mouse monoclonal anti-GAPDH Ab (catalog D16H11; Cell Signaling Technology) was used as a loading control. Images were captured using ChemiDoc MP imaging system (Bio-Rad).

Immunoprecipitation. We performed immunoprecipitation, as previously described (62). Briefly, kidney tissues were homogenized in CHAPS buffer (30 mM Tris-Cl pH 7.5, 150 mM NaCl, 1% CHAPS containing protease and phosphatase inhibitor cocktails [Sigma-Aldrich]) and 250 μg total protein incubated with 1 μg of PTP-ζ Ab overnight at 4°C. Proteins were transferred onto nitrocellulose membrane, and immunoblotting was performed with polyclonal anti-sheep IL-34 Ab against Asn21-Pro242 (catalog AF5265; R&D Systems). Mouse monoclonal anti-PTP-ζ (catalog D16H11; Cell Signaling Technology) and mouse heavy chain IgG were used as loading control for input and immunoprecipitation, respectively.

Renal histopathology. Kidneys were fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned (4 μm), and stained with periodic acid–Schiff (PAS). We scored kidney pathology, as previously detailed (63).

Immunostaining. We stained cryostat-cut mouse kidney sections for the presence of: Ms, using anti-mouse F4/80 Ab (clone BM-8; Invitrogen) and anti-mouse CD68 Ab (clone FA-11; AbD Serotec), as previously detailed (4); proximal tubules using fluorescein isothiocyanate–conjugated (FITC-conjugated) lotus tetragonolobus lectin (LTL; Vector Laboratories) and collecting ducts using biotinylated dolichos biflorus agglutinin (DBA; Vector Laboratories) in combination with Texas red streptavidin (Vector Laboratories); and neutrophils, using anti-mouse Ly6G Ab (clone SP6, Vector Laboratories), followed by FITC-conjugated goat anti-rabbit IgG (Invitrogen) and C3-conjugated goat anti-rabbit IgG Ab (Invitrogen). We enumerated the number of F4/80+/Ki-67+ cells in 20 high-power fields (HPF).

Kidney biopsy sections were incubated with a primary Ab, rabbit anti-human IL-34 Ab (clone C-19, catalog sc-243072, Santa Cruz Biotechnology Inc.) rabbit anti-human PTP-ζ (catalog ab126497, Abcam), rabbit anti-human CSF-1R (clone C-20, catalog sc-692, Santa Cruz Biotechnology Inc.), rat anti-human Ly6G (clone RB6-8C5, catalog ab25377, Abcam), and mouse anti-human CD68 (clone SP110, sc-52998, Santa Cruz Biotechnology Inc.). The primary Ab was detected by incubating with biotinylated goat anti-rabbit Ab, rabbit anti-rat, and goat anti-mouse Ab, followed by development with 3-3-diaminobenzidine (Vector Laboratories), as previously detailed (4). Nonspecific binding was determined using rabbit anti-human IgG (IL-34 staining) or rat anti-human (Ly6G staining), or with mouse anti-human IgG (CD68 staining) (eBioscience). We determined the percent-positive TECs or positive infiltrating cells in 10 randomly selected HPFs.

Albuminuria. To quantify albuminuria levels, we analyzed 20 μl urine collected over 8 hours by SDS-PAGE, as previously described (64).

Collegen detection. We stained paraffin sections after rehydration in Picrosirius red solution for 1 hour and rinsed with acidified water. After kidney sections were dehydrated and mounted, the magnitude of staining was analyzed as previously detailed (4) using a Nikon Eclipse E1000 upright fluorescence microscope and Adobe Photoshop CS2.

KIM-1 and NGAL expression. Kidney cryostat-cut sections were stained with polyclonal anti–KIM-1 Ab to determine tubular injury, as previously detailed (4). The NGAL protein was detected using a Luminex xMAP technology, as previously described (65).

Generating BM®. Mo were generated from mouse BM, as previously detailed (3).

Stimulating Mo using hypoxic TEC supernatant. We isolated and expanded TECs from Il34+/- and WT kidneys, as previously reported (3). We cultured TECs for 24 hours under hypoxic conditions with 99% N2/1% O2 at 37°C in a hypoxic chamber and evaluated viability using both microscopic analysis of trypan blue exclusion staining and flow cytometry analysis of PI staining. Cell supernatant was collected after hypoxia and was used to stimulate BM®. To derive BM®, we cultured BM in L929 conditioned media and then starved BM® in serum-free DMEM medium without L929 for 2 hours. We incubated BM® with supernatant from hypoxic Il34+/- and WT TECs. To restore IL-34 in Il34+/- TEC supernatants, we added rIL-34 protein to hypoxic Il34+/- TEC supernatant at concentrations ranging from 50-500 ng/mL. To block IL-34 and CSF-1, anti–IL-34 Ab (10 μg/mL, catalog AF5195, R&D Systems) and anti-CSF-1 Abs (2 μg/mL, 552513, BD Biosciences) neutralizing Abs were added to hypoxic WT and Il34+/- TEC supernatants during incubation with BM®. After incubating for 24 hours, we analyzed Mo proliferation with the MTT assay (Roche Diagnostics) and BrdU incorporation (10 μM, 2 hours) using flow cytometry.

ELISA. To quantify IL-34 and CSF-1 levels, in the kidney, circulation and hypoxic and normoxic TEC supernatants, samples were analyzed using a mouse IL-34 ELISA (R&D Systems) according to the manufacturer’s instructions and a mouse CSF-1 ELISA (7). We measured human IL-34 levels with a human IL-34 ELISA (R&D Systems) according to the manufacturer’s instructions. All measurements were made in duplicate.

qPCR. qPCR was performed, as previously described (4). We detected Csf1, Il1b, Fms, Pipr21 and Gapdh using Quantitect Primer Assays (QIAGEN) or using primers purchased from Invitrogen and Integrated DNA Technologies: Csf1, forward 5′-GGCTTGGCTTTGGAAGTATGCTT-3′, reverse 5′-GGAGTTGTCGGTACATGCTT-3′, Il34, forward 5′-TTGCTGTGAAACAGCCCATATG-3′, reverse 5′-CCGAGAACCAAGGTACACATGTTT-3′; Fms, forward 5′-TGTCATCGACGCTTATG-3′, reverse 5′-CGGAGATCCCGGTGGTACG-3′; and Gapdh, forward 5′-AGTGGGTTGAGCACGGTACG-3′, reverse 5′-TGTAGACATGTTGGACCCG-3′. Other purchased primers used in this study were: collagen I, forward 5′-TggAAGCCGGGAGGAGT-3′, reverse 5′-TggTGGGGTGTGTAGACCCCTG-3′; fractalkine/Cx3cl1, forward 5′-TGGGACTTTTTGGTGTTTGCCTC-3′, reverse 5′-CAGAATTGG-
CACAGACATTTG-3′; \textit{Kim1}, forward 5’-TAAACCAGAGATTCCCA-AC-3′, reverse 5’-GATCTGTGGAAATATGCGTG-3′; \textit{Mcp-1/Cl2}, forward 5’-GCTTGAAGTGGTTGTGTAAGAAA-3′, reverse 5’-CTCACTGT- CTGACTCTAGTTC-3′; \textit{Mplha/Ccl3}, forward 5’-TCTCACACT- GCCCTTGAGTC-3′, reverse 5’-GGCTGGTGAATCTTCCCGTGT-3′; and \textit{Ptpre1}, forward 5’-GGAGATTCCACAGGTCAGG-3′, reverse 5’-AAGTCAAGGCGACAGCAGCATAC-3′. Ip10/Cxcl10 expression was examined using primers designed by Applied Biosystems. The data were analyzed by the ΔΔCT method.

\textit{Flow cytometry.} We prepared and stained single-cell suspensions from kidneys, RBC-lysed BM, and blood cells for intracellular and extracellular antigens as previously described (63).

\textbf{Antibodies for flow cytometry.} We used the following antibodies from BioLegend for FACS analysis: FITC-conjugated anti-mouse/human CD11b Ab (clone M1/70); phycoerythrin-conjugated (PE-conjugated) anti-mouse CD11b Ab (clone 15-2E); PE-conjugated anti-mouse Ly6C Ab (clone HK1.4); PE-conjugated anti–Dectin-1 Ab (clone RH1); PerCP/Cy5.5-conjugated anti–mouse/human CD11b Ab (clone M1/70); allophycocyanin-conjugated (APC-conjugated) anti–mouse F4/80 Ab (clone BM-8); Pacific blue–conjugated anti–mouse CD45 Ab (clone 30-F11); APC/Cy7-conjugated anti–mouse Ly6G Ab (clone 1A8); biotinylated anti–mouse Ly6C Ab (clone HK1.4); FITC-conjugated TNFα Ab (clone MP6-XT22); and FITC-conjugated streptavidin. In addition, we used FITC-conjugated anti–CD3ε Ab (clone I45-2C11) Ab from eBioScience, FITC-conjugated anti–inos-2 (6/iNOS/NOS Type II) Ab from BD Biosciences, and PE-conjugated anti–Arginase-1 polyclonal Ab from R&D Systems.

\textbf{BrdU incorporation assay.} We injected mice (i.p.) with BrdU (2 mg/mouse, Sigma-Aldrich) 3 hours before sacrifice. BrdU+ cells were analyzed with an anti-BrdU Ab (clone Bu20a, BioLegend) by flow cytometry.

\textbf{Adoptive transfer.} We isolated BM from MacGreen/B6 mice and adoptively transferred the eGFP+ cells (2 × 107 and 1 × 107) by injection into the tail vein of B6 or WT mice 24 hours after I/R. Mice were sacrificed 3 hours later. Kidney and blood samples were processed to detect eGFP+ cells using flow cytometry, as previously detailed (63).

\textbf{Recruitment assays.} BM (2 × 107) cells from MacGreen/B6 mice (eGFP+ myeloid cells) were stimulated either with active or heat-inactivated (95°C, 30 minutes) PTx, as previously described (66), and adaptively transferred into WT B6 mice after I/R (d1). After 3 hours, kidneys and blood were collected and analyzed by flow cytometry. The viability of donor cells was tested using PI (Sigma-Aldrich) and analyzed by flow cytometry.

\textbf{Chemotaxis assay.} TECs isolated from B6 mice were incubated with TNFα (25 ng/ml) with and without anti–IL-34 Ab (catalog AF5195, R&D Systems) and anti–MCP-1 Ab (catalog 479-FE-010, R&D Systems) using increasing concentrations (1.25–40 μg/ml). Following stimulation for 24 hours, the supernatant was replaced and stimulated TECs were coincubated with primary isolated Ms from B6 mice using a 2-chamber, 96-well plate separated by a polycarbonate membrane (pore size: 5 μg/ml). To quantify Ms chemotaxis, samples were analyzed in duplicate according to the manufacturer’s instructions (Cell Biolabs Inc.).

\begin{enumerate}
\item Menke J, et al. CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice.
\end{enumerate}

