Journal
Cancers (Basel)
Publication Date
2021
Volume
13
Issue
15
First Page
3795
Document Type
Open Access Publication
DOI
10.3390/cancers13153795
Rights and Permissions
Dutta K, Roy S, Whitehead TD, et al. Deep Learning Segmentation of Triple-Negative Breast Cancer (TNBC) Patient Derived Tumor Xenograft (PDX) and Sensitivity of Radiomic Pipeline to Tumor Probability Boundary. Cancers (Basel). 2021;13(15):3795. Published 2021 Jul 28. doi:10.3390/cancers13153795
Recommended Citation
Dutta, Kaushik; Roy, Sudipta; Whitehead, Timothy Daniel; Luo, Jingqin; Jha, Abhinav Kumar; Li, Shunqiang; Quirk, James Dennis; and Shoghi, Kooresh Isaac, "Deep learning segmentation of triple-negative breast cancer (TNBC) patient derived tumor xenograft (PDX) and sensitivity of radiomic pipeline to tumor probability boundary." Cancers (Basel). 13, 15. 3795 (2021).
https://digitalcommons.wustl.edu/open_access_pubs/10687