Journal
EClinicalMedicine
Publication Date
10-1-2021
Volume
40
First Page
101112
Document Type
Open Access Publication
DOI
10.1016/j.eclinm.2021.101112
Rights and Permissions
Geva A, Patel MM, Newhams MM, Young CC, Son MBF, Kong M, Maddux AB, Hall MW, Riggs BJ, Singh AR, Giuliano JS, Hobbs CV, Loftis LL, McLaughlin GE, Schwartz SP, Schuster JE, Babbitt CJ, Halasa NB, Gertz SJ, Doymaz S, Hume JR, Bradford TT, Irby K, Carroll CL, McGuire JK, Tarquinio KM, Rowan CM, Mack EH, Cvijanovich NZ, Fitzgerald JC, Spinella PC, Staat MA, Clouser KN, Soma VL, Dapul H, Maamari M, Bowens C, Havlin KM, Mourani PM, Heidemann SM, Horwitz SM, Feldstein LR, Tenforde MW, Newburger JW, Mandl KD, Randolph AG; Overcoming COVID-19 Investigators. Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents. EClinicalMedicine. 2021 Oct;40:101112. doi: 10.1016/j.eclinm.2021.101112. © 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Recommended Citation
Geva, Alon; Spinella, Philip C; and et al, "Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents." EClinicalMedicine. 40, 101112 (2021).
https://digitalcommons.wustl.edu/open_access_pubs/10850